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Quantization of systems described by Lagrangians with higher-order derivatives is performed. It is
shown that the usual Lagrangian with first-order derivatives may be consistently replaced by one with
second-order derivatives, the resulting wavefunction being one of a mixed representation.

I. INTRODUCTION

The Hamilton-Lagrange theory was extended to
include higher-order derivatives by Ostrogradsky® in
1850. By taking the variation of the time integral of
a Lagrangian containing the nth derivative of the
generalized coordinates while holding the end points
fixed, one obtains the equation of motion. By letting
the end points also vary, the generalized momenta
are found and, hence, a Hamiltonian which is con-
stant in time for Lagrangians not explicitly time-
dependent. It is easily shown that the generalized
momenta and the derivatives of the generalized co-
ordinates are related by the Hamilton canonical
equations.

In 1940, Bopp? and, in 1942, Podolsky,? prompted
by divergences in electromagnetic theory, proposed
Lagrangians containing the second derivative of the
potential. Quantization of the theory resulted in
finite energies.

The success of these calculations gives rise to several
investigations* of the quantization of the Ostrogradsky
theory. These investigations concerned Bopp and
Podolsky’s calculations, relativistic effects, and ap-
proximations which simplify the Ostrogradsky quanti-
zation. Green® included another term involving the
second derivative of the potential into Podolsky’s
Lagrangian and obtained a generalized meson-field
theory which also led to finite energies. The success
of this calculation led Pais and Uhlenbeck,® in 1950,
to consider if, in general, divergent features of field
theory could be eliminated by using higher-order
field equations. However, they found no way to recon-
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cile convergence, positive-definite free-field energy,
and causality of the state vector.

Subsequently, little work was done on the general-
ized theory until 1958, when Borneas’ reasserted the
facility of the Ostrogradsky method. This presentation
was amplified by Koestler and Smith® in 1965 and by
Kruger and Callebaut? in 1968. )

II. OSTROGRADSKY’S THEORY

Ostrogradsky assumed that if a Lagrangian con-
tains derivatives of arbitrarily high but finite order,
the appropriate equation of motion will be obtained
by setting the variation of the time integral equal to
zero. We have

6ftt!L(Qjo DQ;, D*Q;, - -, DNQI? Hdt=0, (1)

where j=1,2,--+, R and D = dfdt. Holding the
end points fixed gives the equations of motion:

n=0

(2

Letting the end points vary gives rise to the generalized
momenta:

P, =N2—"(—1)"D"(—L—), 3

=0 D¥"Q,
where n =1,2,-++, N. Note that the right side of
Eq. (3) is the functional derivative of L with respect
to D*Q,. If one defines a Hamiltonian analogous to
the usual form when no higher derivatives are present,
one again obtains a function which is constant if the
Lagrangian is not an explicit function of time, We
have

R N
H =i§1 glpimD"Qi - L(Qj’ DQ;', Tty DNQj’ t)-
4)
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It would be desirable to find pairs of canonical
variables, but in seeking these we encounter a problem
which does not occur in the usual theory. For a given
j variable, the Hamiltonian is a function of N momenta,
the generalized coordinate, and N derivatives of the
generalized coordinate. Obviously, not all of these
2N + 1 variables can be taken by pairs. This problem
is not met in the usual formulation since the highest
derivative of the generalized coordinate, the velocity,
can be expressed in terms of the momentum. However,
for our case we have no guarantee that Eq. (3) will
be such that the highest derivative can be expressed in
terms of the other 2N variables. In fact, in Sec. IV an
example is considered where Eq. (3) can not be used.
We will find that, rather, the equation of motion (2)
must be applied.

The remaining 2N variables are easily paired since

0H _ d
= — n~10) 5
2, . dt(D Q1) )
oH
6
3pmig, ( jon)- (6)

Thus P, , and D"!Q, act as canonical variables
wheren=1,2,---, N.
ITII. QUANTIZATION

We may define the Poisson bracket, using the gen-
eralized variables, to be

av ou  ov

u,v .

{ )= gl nz (aD”“lQ, oP;, aP,-,n aD"“l.Q,-)
€]
Consequently, we find, in analogy to the usual

formulation,
{Dm_lQi’ Dn_le} = {Pa',m’ Pk,n} = 0’ (8)
{D™ 0y, Py} = S4i0mn, )
oH

D" Q,,H} = , 10

{D"7Q;, H} ap,. (10)
oH

P, H} = 11

{ 7y } aD"-ng ( )

Comparlson of Egs. (10) and (11) with (5) and (6)
leads us to seek to quantize the theory. Letting the
variables be considered as operators, we postulate

(P, D0l = P;,,D™'Q, — D™'Q,P,
= ctn, Nty (12)
z

where C(n, N)is a ¢ number and perhaps a function
of nand N.
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We take the function F to be any term of H,
assumed of the form
N—-1

F = H H (P ’n)a(i n)(DnQ )b(a ,m}

=1 n=0

(13)

where a(j, n) and b(j, n) are arbitrary constants. With
the use of Eq. (12) one finds

(o0, F1= =2 ) ap, —.
[Py Fl =20 1) DiiQ,- L)
and so
(0, H1 = = L e 1 . n, (16)
[Py s H] = ?a ) D,,Hl G

Equations (16) and (17) may be considered the
generalized Heisenberg equations of motion for
Bose-FEinstein quantization. If we let C(1,1) = 1,
we find that (16) and (17) reduce to the nongeneralized
equations of motion.

For consistency we must demonstrate that one is
permitted to choose a ¢ number for the right side of
Eq. (12). We must show the commutator of P, , and
D10, commutes with H:

({P;n, D"Q,], H]
oH

oH
=ik s NX| Pjas — ,
HCn ){[ : an,,,] [aD"‘IQ,-
=O,

0]
(18)

where we have used Egs. (14) and (15) with F being
0H|0D"*Q; and 0H/0P; ,, respectively.

For completeness we should note that the com-
mutation brackets in Eqs. (12)-(18) may be replaced
by anticommutation brackets to obtain a generalized
Fermi-Dirac quantization.

The validity of the postulate (12) rests, of course,
upon the experimental implications that result. It is
for this reason that we have not taken the restriction
C(n, N) = 1, as is generally done. Actually, to obtain
results consistent with experiment, we will note in
Sec. V that C(n, N) can not be taken as one in the
given example. Although Eq. (12) generalizes the
Heisenberg uncertainty relation, we must assert a
type of correspondence principle such that if Eq. (12)
embodies only the variables of the usual uncertainty
relation, C(n, N) must be such that the usual un-
certainty relation holds. We will return to this topic
in Sec. IV.



QUANTIZATION OF THE GENERALIZED HAMILTONIAN

If Eq. (12) operates on a wavefunction, one may
take

h
P,,—=C(n, N and D™'Q,-— D™
Xindr (n, N) 30", O (O
(19)
or
m1 h 0
P,,—P;, and D™ Q,— —-C(n,N) .
’ ’ i 0Py m
(20)

These operators may now be used for the wave
equation
HY, = EY,, (21)

where E, is the eigenvalue of H. However, we have
not shown that E, corresponds to the energy and, in
fact, in general it will not. If H classically is equal to
the energy, however, it seems understandable that E,
is the energy eigenvalue.

If Eq. (19) is used, ¥, will be a function of Q;,

DQ,, -, DN-1Q,, with the scalar product defined
R

Ve, Yo) = 1—1; dQ;dDQ; -+ dDVTQ WY, . (22)
j=

Equation (20) may be used to give the momentum
representation. Also, since Eqgs. (19) and (20) hold for
each value of n, by using both equations a crossed
representation results.

IV. AN ALTERNATIVE TO KINETIC ENERGY
IN THE LAGRANGIAN

The usual classical Lagrangian is written as the
difference between the kinetic and the potential

energies. However, if higher derivatives are permitted,
one can have

3
L= % Z - V(xl > X2, x3) (23)
which has the required equations of motion
mD%*; = — v . (24)
0x;
The momenta are given by
Pi.l = %me;, (25)
Pjq = —imx;, (26)
and the Hamiltonian by
3 3
H =2P5,1ij +2P,-,2D2xj
j=1 j=1
3
+ % zmxisz:i + V(xla X2 xa), (27)
=1

which is equal to the energy.
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Since we would expect the Hamiltonian to be a
function of only pairs of canonical variables, we must
replace the term involving D2x;. Normally, the
equations analogous to (25) and (26) would be used
to eliminate the odd variable, usually the velocity.
Obviously they can not be used here. If, rather, the
equation of motion (24) is used, the Hamiltonian
becomes

2 13 oV
H=2P,-,1ij— '—sz’z—
=1 m j=1 5 ;

3
-1 Z — + V(xy, X5, X5). (28)

Let us symmetrically insert Eqs. (25) and (26) into
the Hamiltonian

1 3 3
= —[ >P,.Dx, + zp,.,lpx,.}

[i aV(x,) + Z y 3V(x,):|

j=1

_ 1[% ]3V(x,) i ’aV(x,):|

H X;

+ 3V (x;) + V(x)]
_ 17 2P}, | Sm(Dx))?
[ >tags }

2li3r m =1 2

(29)

V(P i% aV(x:i):|
0x;

2m[ 213 8P, F12
s 9V (P;,2) : aV(xg)
4[:'211)’.’Z oP;, gl X; :|
l[V(P;‘ 2) + V(x,)]

( i1 1) + z (D ) + _lV(PJ 2) + lV(x,)
=1 m =14~
(31)

With the Hamiltonian in this form the canonical
equations are

(30)

oH 19V(x,)
DP,j=—— = ———£ 32
i ox, 2 ox, (32)
0H m
DP,, =~ = — — Dx;, 33
2 aDx, 5 X (33)
0H 2P,
M= =T
7,1
0H  10V(P,,)
D(Dx;) = = — =R 35
(D)= 3p.. =2 op,, (33)

If Eq. (19) is used for quantization, the wave-
function will depend on both x; and Dx,. From the
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form of the Hamiltonian in Eq. (31) it appears that
separation of variables may be assumed. Also, since
both operators Dx; and P, relate to the observable
velocity, we must have

(Dx,) = <C(1 LAY

36
i5x,)" (36)

This will be illustrated in Sec. V.
Regarding the correspondence with the uncertainty

principle, it appears that since P;, equals mDx,[2
instead of mDx;, we must set

c(1,2)= 4% (37
Similarly, we must have
c@2,2) =% (38)

V. HARMONIC OSCILLATOR

The Lagrangian for a particle of mass m attached
to a spring of spring constant k may be chosen as

L= —%xD2x —]—cxz, 39
whose equation of motion is
mD*x = —kx. (40)

Expressing the Hamiltonian in the form of Eq. (31)
and using the quantization prescribed by Eqgs. (19),
(37), and (38), we have

[ A + m( Dx)?
4m ax 4

2 2
kit 0 | kx ]‘F —EY,. (41)
" am? 9(Dx)?
Assuming separation of variables
IIfn(x’ Dx) = (I)n(x)Xn(Dx) (42)
gives
B 4 kx?
— 0, ——(I) = C,P, 43
" 4m dx? t+ (43)
and
kn* d’,  m(Dx)?

- 2t En n = C ns 44
am*d(Dxy 4 * tn = Cattns (44)
where C,, is the constant resulting from the separation.

Finite solutions for the powers series to Eq. (43)
occur if there is some integer n for which

C, = }iw(2n + 1). (45)

C. F. HAYES

Similarly, Eq. (44) will have a finite solution if

E, - C, = tiw(@2n + 1). (46)
Combining Egs. (45) and (46) gives
E, = (n + Hho. @7

The wavefunction normalized to unity over the
infinite range of x and Dx is

. = () () P () ]
X exp [_ mu;;z) — kxj, (48)

where H,(Y)is the Hermite polynomial.
If the expectation is calculated,

0=fwfwwmwﬂuaun, (49)
one finds
(x) = (Dx) = (Py) = (Py) = 0, (50)
as is required, and
/2P2\ /m Dx 2\ /k 2\ /2k 2\__
\n 7= QO =0 = Y
(51)

as is required for the ground state.

Similarly, a combination of Eqs. (19) and (20) can
be used to give the wavefunction in x + Py, Dx - P,, or
P, - P, spaces. In each case we must take C(1,2)
and C(2, 2) to be } to obtain results consistent with
what is known to be the energy eigenvalues and
expectation values for the harmonic oscillator.

VI. CONCLUSION

We have shown that it is possible to replace the
usual Lagrangian containing derivatives of only first
order by one with second-order derivatives and that
such a change leaves the equations of motion intact
and the Hamiltonian still equivalent to the energy.
However, there is a change in the definition of the
generalized momenta which results in a different form
for the uncertainty principle and the rules for quanti-
zation. The resulting wavefunction has a mixed
representation, but gives the usual energy eigenvalues
and expectation values.
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The following results for spin-} Ising ferromagnets are extended to the case of arbitrary spin: (1)
the theorem of Lee and Yang, that the zeros of the partition function lie on the unit circle in the complex
fugacity plane; (2) inequalities of the form (AB) > (A4)(B), where 4 and B are products of spin operators;
(3) the existence of spontaneous magnetization on suitable lattices. Results (2) and (3) are also extended
to the infinite-spin limit in which the spin variable is continuous on the interval ~1 < x < 1.

1. INTRODUCTION

The standard Ising model which has been extensively
studied in the theory of magnetic systems, alloys,
fluid phase transitions, etc., is a “spin-}”’ model in the
sense that the “spin variable” o, associated with a
particular particle or lattice site can take on only the
values +1 and —1, corresponding to the two eigen-
values of the z component of angular momentum
for a particle of spin 44. A natural extension of this
model is one in which the spin variable may take on
the p+ 1 values p, p—2,p—4,""-,2—p, —p,
corresponding to eigenvalues of the z component of
angular momentum for a particle of spin p/2 (times
k). This generalization of the Ising model has been
considered occasionally in the literature,! though it has
received much less attention than the spin-} case.
Upon dividing the spin variable by p and taking the
limit p — oo, one obtains the “infinite spin” or “classi-
cal Ising” model,? one of a variety of lattice systems
with continuous variables (others include the spherical
model and the “classical Heisenberg” model) which
are of some interest in the statistical mechanics of
phase transitions.

Our purpose in this paper is to extend to the case of
arbitrary spin greater than # certain results which are
known to be true under very general conditions for
spin-4 Ising systems with entirely ferromagnetic ex-
change interactions: (1) the inequalities of Kelly and
Sherman® (which generalize some earlier results by
the author?) of the form (4B) > (4){(B), where A and
B represent products of spin variables; (2) the theorem

* Research supported in part by the National Science Foundation.

+ Alfred P. Sloan Research Fellow.
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of Lee and Yang,® which states that zeros of the
partition function lie on the unit circle in the complex
fugacity plane®; (3) proofs of the existence of phase
transitions in two-, three-, and higher-dimensional
lattices. Results (1) and (3) will also be extended to the
infinite-spin (classical) Ising model, thereby showing,
for example, that this model with nearest-neighbor
ferromagnetic interactions on a square or simple
cubic lattice undergoes a phase transition.

In each case, the extension is carried out by means
of a representation of an Ising particle of spin p/2 in
terms of a cluster of p spin-} particles interacting
among themselves through suitable ferromagnetic
pair interactions. The idea of, the representation is
explained in Sec. 2, while Sec. 3 shows how to con-
struct appropriate ferromagnetic representations for
arbitrary spin. Once these representations are in hand,
the extensions (1) to (3) mentioned above are quite
straightforward and the details will be found in Sec. 4.

2. REPRESENTATION IN TERMS OF SPIN-}
PARTICLES

Consider an Ising “particle” of spin p/2, for which
the variable S takes on the values p,p — 2,p — 4, -+,
—p. We shall write S as a sum

S=o0+0+ " +o0,, 2.1

where the o, are “ordinary” Ising variables which take
on the values +1 and —1. Collectively they form a
“cluster” which “represents” the variable S. Provided
the weight function W (o, , - - - , 0,)is properly chosen,
we may write
2f(&H=23 2Woflor+ 0.4 +6,) (22)
8 o1 G2 L4
for any function f. In (2.2) (and hereafter) we use the
convention that, in summing over a variable where the
limits are not specified, the variable takes on all (and
nothing but) its allowed values. Thus the sum over S
® T. D. Lee and C. N. Yang, Phys. Rev. 87, 410 (1952).
¢ The result of Lee and Yang has recently been extended to Ising

ferromagnets with spin 1 and § by M. Suzuki [J. Math. Phys. 9, 2064
(1968)] and T. Asano [Progr. Theoret. Phys. (Kyoto) 40, 1328 (1968)].
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is from —p to p in steps of 2, while for g; it is over the
two values -1 only.

We shall require that the weight function W, be
nonnegative, and it must obviously have the property
that, for any ¢ in the range —p < g < p which differs
from p by zero or an even integer,

zz - z Wy(oy, 00 " gp)a(gla,-; q) =1, (2.3)

o1 o3 a
where

oa; b) =1,

=0,

ifa=>5,

ifa#b. 2.4)

As an example, consider the spin-1 case, p = 2. An
obvious choice for W, is
W2(19 1) = WZ(—I, "'1) = 1,

Wyl, =) = W(—1,1) = &. 2.5)

We shall call W, a ferromagnetic pair weight func-
tion provided it can be written in the form

Wy(01,05° " 0,) = H 31 + g;0)) + 31 — 0,0)X,;]

i<j
= exp [ S Kiy(00; — 1)], (2.6)
i<j
with
0<X,;=exp—2K;<1 (2.7a)
or
0<LK,; < . (2.7b)

While (2.6) looks complicated, it is really very
simple: W,, for a particular choice of 0y, -+, 0., is
a product of factors X;, one for each pair (ij) of spins
for which o; # o;. The condition (2.7) corresponds to
the requirement of ferromagnetic exchange within the
cluster (see discussion below). We permit K;; to have
the value + oo (so that X;; = 0); this case is not
particularly pathological and turns out to be very
useful. The example (2.5) is a ferromagnetic pair
weight function with X;, = 4 or K, = 4 In2.

A graphical representation of spin clusters with
ferromagnetic pair weight functions proves useful
for purposes of exposition and intuition; we shall not
employ it formally in proofs. A particle of spin % is
represented by an open circle, and if 0 < X;; < 1, a
line (or “bond”) is drawn from i to j. If X; = 0, the
circles representing i and j touch, whereas the line is
absent if X,; = 1. Figure 1 shows possible ferromag-
netic pair representations for p = 2 [see (2.5)] and
p=3.

Consider a system (hereafter known as the “original
system”) of n Ising particles with spin variables S,

ROBERT B. GRIFFITHS

OI/ZO D=2

O IIZO l/3o p=3

Fic. 1. Examples of ferromagnetic pair weight functions. Values
of X;; are noted next to line joining spins i and j.

Ss, "+, S,. For the jth particle, S; may take on the
values p;,p, — 2, -+, —p;, where p, is a positive
integer which may depend on j. The system has a
Hamiltonian H(S;, - -, S,), a real-valued function
of the spin variables. The value + oo is permitted, but
not — oo, and for at least one choice of the variables
H must be noninfinite [This insures that the partition
function, Eq. (2.11), is nonzero].

We shall represent the variables S; in terms of
clusters of spin 4:

2
S; =Z Ojks (2.8)
k=1
where the o,; can take on the values 4-1. Let Wy(o;,
05, ' * ) be a suitable weight function, i.e., nonnega-
tive and satisfying (2.3) for p = p;. By means of (2.8),
any function F(S;,---,S,) (including the Hamil-
tonian H) may be expressed as a function of the o,;;
since no confusion is likely to result, we shall use the
same symbol for the function with either set of vari-
ables.
The collection of all the o;; will be known as the
“analog” system and for this system we define the
analog Hamiltonian A as

1:1(0'11 ©)=H(Sy(oy ") ")
- ﬁ_lgl In Wyo,,--9), (2.9)

where f = (kT)™ is the inverse temperature and we
shall suppose that 0 < 8 < co. (Note that the analog
Hamiltonian is temperature dependent, a fact which
is of no consequence for the purposes of this paper, but
could be important in considering specific examples.)

If F(S;---S,) is a function everywhere finite, we
have

Tr [Fe?H} =Y -+ > FefH
5 8

=zzz z VVIW2 W"Fe"BH
g11012 a2y Tnp,

= Z e z Fe-—ﬂH
o11 Onp,

= Tr [Fe*2]. (2.10)

The symbol Tr (trace) is, in the present context, merely
an abbreviation for the multiple summation. If F = 1,
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(2.10) states that the partition functions

Z=Tr[e?tE)=Tr[e?8] =2

for the original and analog systems, respectively, are
identical and (2.10) together with (2.11) implies that
the thermal average of F,

(2.11)

(Fy = Tr [Fe*®)|Z = Tr [FePB)Z, (2.12)

is the same in both cases. Equations (2.11) and (2.12)
are the basis of the extensions of the Lee-Yang
theorem, etc. (see Sec. 4), but first we shall construct
appropriate weight functions.

3. FERROMAGNETIC WEIGHT FUNCTIONS

Not only do there exist ferromagnetic weight
functions for arbitrary spin p/2, but for p > 3 ihe
choice is not unique. We shall explicitly construct a
set of weight functions which are reasonably simple
and at the same time of a form which proves useful
when considering phase transitions (Sec. 4D).

Consider first the case where p = 2r is an even
integer. For notational convenience, separate the p
o’s into two groups of r each, the first labeled by
negative subscripts, 6_;, 6_,, * * * , 0_,, and the second
with positive: oy, 05, - - -, 0,. All X;; in (2.6) shall be
set equal to 1, except for the following:

X—i,—i+1 = 0, fOI' 2 S i S v, (3.13)
X—l.l = %, (31b)
Xion=2/Qi+1), for1 <i<r—1 (3.10)

In particular, for p = 2, X_; ; = }, while, for p = 4,
X ,=0 X,,=4, X,, =% (For graphical rep-
resentations when p = 2, 4, and 6, see Figs. 1 and 2.)

The X,; in (3.1) clearly satisfy (2.7). In addition, we
must check (2.3). This need be done only for g > 0,
since W, is unchanged if ;- —o; for every i. An
explicit calculation can be carried out for p = 2 and
4. For the latter, Wy(o_;, 0_, 0y, 0,) is nonvanishing
in the following cases:

g=4:W(Q1,1,1,1)=1,

g=2: W(1,1,1,—-1) =%,

g=0: WwQ,1, -1, =1) = 4,
w(-1,-1,1,1) = 4.

wi, 1, —1,1) =4,

3.2)

The condition (3.1a) serves to “lock together” all
the o’s with negative subscripts, so that if W, is not to
vanish, one of two possibilities

O, =0y ='""=0,=1,

. (3.32)
—~1

g_, = 6—1‘-}-1 == G——-l = (3.3b)
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2 2/3
CO202L20
OOOHEQ2LO2ED p=s

F1G. 2. Weight functions for p even.

p=4

must occur. For ¢ = 0, there are precisely two non-
vanishing terms in (2.3): (3.3a) together with ¢, =
gy = -+ =0, = —1, and (3.3b) together with o, =
gy =---=1; in either case W, =X_,,=14 and
(2.3) is satisfied.

For ¢ > 0, all the nonvanishing terms in (2.3)
correspond to (3.3a). We shall divide the sum in (2.3)
into two parts:

Up(q) z z Wp(l 3 1, Gl’ T, o'r—lr 1)
xﬂzwm} (34)
Vp(q) Z z 71’ 0'1""90'1-——1’_1)

” X 6(21: 0;; q). (3.5

These definitions’yield immediately the special values

U,0 =0, V,(p)=0. (3.6)
The result
Wp+2(1a Loy, 0, 0, 004y)
ol 00,000, r)a(dr; Ors1)
+ 2/(p + DIW,(1, -+, L, 00,7+, 6,)0(0,; ~0,41)
(3.7

(note that the first r + 1 arguments of W,,,, but
only the first » arguments of W, are always equal to
1) is a consequence of (3.1) and provides the following
recursion relations for U and ¥, for ¢ (which is an
even integer) in the range 0 < ¢ < p:

Upie(g + 2) = U,(g) + ,,(q) (3.8a)
Vore(@) = V(@) + —— U,(q).  (3.8b)
p+ 1
The expressions
U@ =(@—Dllp—1), for 0<g<p,
=0, for ¢g=0, (3.9a)
Vi@ =@ —9/(p—1), for 0<q<p,
=14, for g=0, (3.9b)

satisfy the recursion relations (3.8), agree with the
special values (3.6), and for p = 4 coincide with (3.2).
(They are also correct for p = 2.) Hence, they are
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correct for general ¢ and p. Since, further, U,(¢) +
Vy(q) =1 for ¢ > 0, we have completed the proof
that (3.1) inserted in (2.6) yields W, satisfying (2.3).

Next suppose that p =r + ¢ is odd, where r =
4#(p + 1) and ¢ = }(p — 1). Separate the ¢’s into two
groups, the first with negative subscripts, o_;,
G_y,"*",0_, and the second with positive, o,
gy, '+ *, 0;. Let the first group be “locked together”:

X in=0, for2<iLr; (3.10)

and for the second group choose X;, with i and j
positive, so that W(a,, 05, * * -, 0,), defined by (2.6)
(with p replaced by ¢) is itself a ferromagnetic pair
weight function. The X;; not defined by these two
conditions, in particular, those for which 7 is negative
and j is positive shall be equal to 1. We must now
check that W thus defined satisfies (2.3) for ¢ an odd
integer in the range 0 < ¢ < p.

Once again, if W is not to vanish, (3.3a) and (3.3b)
represent the only possibilities for ¢’s in the first group
and for ¢ > 0 we must choose (3.3a). In addition we
have

Wp(191"."1!613629""6t)

= Wt(Ul,O'z,"',O't) (3.11)
and thus
-1 ¢
2. o z W,(O'_,, T, O't)d(_z_ o, +Zla'j; q)
11
=z...zm(015'.'36t)6(210'7-;q—r) = 1.
(3.12)

The only remaining problem is to choose W, for
t = §(p — 1). There are several possibilities: for ¢ even
we may use (3.1), while for # odd we may apply the
above construction once again, or we may simply
employ (3.13) below for ¢ even or odd. Figure 3 shows
possible clusters for p = 3, 5, and 7.

As we stated earlier, the choice for ferromagnetic
weight functions for p > 3 is not unique. The above
choices will prove useful in Sec. 4D, but we here
present still another which is somewhat simpler to

OONENG®)
00 OO0 p:=s
OO0 OO O p=7

Fic. 3. Weight functions for p odd.

p=3
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construct, which works for both even and odd p,
and for which none of the X;; vanish. Namely, let all
the X;; (1 <i<j<p)bel except for

X =1/G+1), i=12,-,p—1 (3.13)

The cases p = 2 and 3 are illustrated in Fig. 1. We
leave to the reader the proof that (2.3) is satisfied.

4. APPLICATIONS
A. Notation

As in Sec. 2, we consider a system of n Ising particles
and represent the spin variable for the jth particle, S,
in the form (2.8). For brevity, we shall occasionally
relabel the oy, of the analog system as o,, where «
runs from 1 to

n
m=3 p;.

i=1

4.1)

A multiplicity function u(i) assigns a nonnegative
integer to each integer 7 in the range between 1 and n.
Define

) = 2 p(@), 4.2)
st =TI, (4.32)
i=1
Pt =TT (2", (4.3b)
=1
with (S%)® = 1. The Hamiltonian’
H= -3 J,(S*— P*) + const (4.4)
n
will be called ferromagnetic provided
0<J, <™ (4.5)

for all multiplicity functions u. We permit J, to take
the value + 00, in which case H is the limit (finite or
infinite) of (4.4) as J, — oo. [S* — P* appears in (4.4)
rather than §* to allow for the possibility of infinite
J,; otherwise, the P* could be absorbed into the
constant.] Note also that the sum in (4.4) may involve
an infinite number of multiplicity functions.®

A special case of (4.4{) is
H = —3J,(S:S; — p;p;) — % X (S; — p) + const,
i<j €

(4.6)

7 All Hamiltonians in this paper are understood to be defined only
up to an additive (finite) constant, which is sometimes [as in (4.6)],
but not always, explicitly noted.

8 In principle, one can always rewrite (4.4) using only a finite
number of multiplicity functions, since SP*! may always be re-
expressed as a linear combination of S to lower powers (including
§°). However, it is possible for (4.5) to be satisfied by the original
Hamiltonian but not by the re-expressed version.
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where J, vanishes whenever ¢(u) > 2 and X is the
magnetic field.

B. The Inequality of Kelly and Sherman

Theorem 1: Let v and A be multiplicity functions,
and let the J, for the Hamiltonian (4.4) satisfy (4.5).
Then

(S7H%) = (S"S%) > (S"X(SY). (4.7)

Proof: Let a,b,---,d be a collection of ¢(»)
numbers drawn from the set {1,2,---,n} in some
arbitrary order but with the property that j occurs in
the collection »( ;) times. Using (4.3) and (2.8), we have

- (5+)(3) 5+

=533 000
i j k

where i ranges from 1 to p,, etc.

Since (0,)* = 1, it is possible to replace a term like
(0;)" appearing in one of the summands of (4.8) by 1
if is even and o, if / is odd. Thus it is clear that (4.4)
expressed as a function of the o, has the form used by
Kelly and Sherman,? as does the analog Hamiltonian’
2.9):

(4.8)

Oar>

H= =Y J(c%-1), (4.9)
A
where the A’s are subsets of M = {1,2,---,m}, and
ol = Ifo.. (4.10)
ac M

Further, since the J, satisfy (4.5) and we employ
ferromagnetic pair weight functions satisfying (2.7), it
is clear that

0<J, < . 4.11)

Finally, to verify (4.7), we only need to write it out
in terms of the o’s. Let a’, ', - - - , d’ be a collection of
$(2) numbers taken from {1, 2, - - -, n} in such a way
that j occurs in the collection A(j) times. Then

(S'S’1>

oo\
dk/

\EZ %22 zo'azo'bz *O0aGqy'Gprjr """
= EZ z ZE Z( 05" " OgpOgryOyrjr " * Ogrr)

J k i g

> ZZ 233 E(

ki g

055" OOy Cyrjr ™ * Oy
= \ZE 040y Udk>
k

Oy Oy 0',\
\ZZ 2 b5’ dk'/

= (S")(S%), (4.12)
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where we have used the inequality of Kelly and
Sherman, which is (4.7) for the case p, = 1 for all i
(spin-} particles), in order to obtain the inequality in
(4.12).

Note that the possibility of infinite values for H—
either because some of the J, are infinite, or because of
summing over an infinite number of finite J,—causes
no difficulty. In particular, H is always noninfinite
if §; = p; for all j, and thus Z in (2.11) and (2.12) does
not vanish.

C. Theorem of Lee and Yang on Zeros of the
Partition Function

Theorem 2: If the J;; in the Hamiltonian (4.6) satisfy
(4.5), the zeros of the partition function (2.11), a
polynomial in the variable

z = ¢ 2%

(4.13)
lie on the unit circle |z| = 1 in the complex z plane.

Proof: With the help of a ferromagnetic pair weight
function, the analog Hamiltonian corresponding to
(4.6) may be expressed in the form’

H=—3Jyo0,0,—1)—83(s,— 1),
a<p a

with the fw in the range [0, «]. Lee and Yang® have
shown that under these circumstances the zeros of the
analog partition function regarded as a function of z
lie on the circle |z} = 1. But, of course, the original and
analog systems have identical partition functions
2.11).

(4.14)

D. Phase Transitions

Assume that p; = p is the same for all Ising particles
and define the normalized spin variables

s; = Syp. (4.15)
Let the Hamiltonian? be
=—r 2 L8, — D) —r, 3 Xs;, (4.16)
i<j i

where the scaling factors r; and r, are always assumed
to be positive. We shall employ the special weight
functions defined by (3.1) and (3.10), and in place of
(2.8) write

S;=u; + v, =p" Eaak',f'p zajk’ (4.17)

k<0
that is, u; represents the spms in the cluster which are
“locked together” by the weight functions. It can take
on the values +q, where ¢ = § or (p + 1)/2p for p
even or odd, respectively.
Let

M(ry,15) = (8;) = (u;) + ) (4.18)

be the “magnetization” of a particular particle /.
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Theorem 3: Provided the J;; and X, in (4.16) are all
nonnegative,

IM (1[4, 1yf2) < M (ry, ry)) < Mi(rq, ry), (4.19)

where M, is the value of (s;) in the case p = 1 (spin-$
particles).

Proof: We shall make essential use of the fact that
in the analog system the (o,) are all nonnegative and
monotone nondecreasing functions of the J, in (4.9),
provided these are all nonnegative—a consequence of
the inequality (4.7), and worked out for the restricted
class of Hamiltonian considered here in Ref. 4. These
J, include both terms arising from the J;; and &, in
(4.16) and also the K,;° which appear in the weight
functions (2.6). Thus, if the K,; are increased to
infinity in each cluster, (s;) cannot decrease. But this
locks together all the spins in a cluster, so that s, can
only take the values +1, and (4.16) becomes the
Hamiltonian for a system of spin-} particles (p = 1).
This establishes the second inequality in (4.19).

To establish the first inequality, insert (4.17) in
(4.16) and use (2.9) to obtain the analog Hamiltonian’:

H= —n ZJij(uiuj - qz) — I EJQ-%-
i<j i

_ {rlzJ“[uivj + uv + o, + g° — 1]

i<j

+r, z:;e,.ui} S W,. (4.20)
Define a new Hamiltonian A’ by replacing by zero all
terms in curly brackets in (4.20) and also all K, in the
weight functions except those which lock together the
spins in each u, . Since u, can only take the values 44,
let us write

U, = q0;, 4.21)
and

H = —rq*Y J, (56, —1) — ryq Y 8,5, (4.22)
i<j %

Since A’ is obtained from H by reducing various of the
J, to zero, it is clear that ()’ in the new system is a
lower bound for (u;) in the original system, which is,
in turn, a lower bound for M,. However, (4.22) is
identical with (4.16) when p = 1, apart from changes
in the scaling factors. These two observations, to-
gether with g > 4, establish the first inequality in
(4.19).

If r, = 0, M, always vanishes because (4.16) is then
unchanged if all the s; are replaced by —s,. However,
if one evaluates M, = (s;) in the limit of an infinite

? Of course, as long as (2.3) is satisfied, M, will be independent of
the X;;, but we have in mind variations of the latter which will
alter the left side of (2.3).
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system with r, > 0 and then takes the limit r, — 0, it
may happen that A, in this limit is positive (we
assume JE, > 0). If this is the case, the system is said
to exhibit a “spontaneous magnetization.” ** There
are a number of cases where Ising ferromagnets of
spin-4 are known to exhibit a spontaneous magnetiza-
tion at temperatures T < T,(1), the Curie tempera-
ture, and no spontanecous magnetization at higher
temperatures.!! In these cases, (4.19) implies that the
corresponding spin-p/2 ferromagnet has a Curie
temperature T,(p) in the range

iT.(1) < T(p) < Tu(b), (4.23)

provided the values of J,; are the same in both cases,
with the normalization used in (4.16).

E. The Infinite-Spin (Classical) Limit

The continuous variables x; for a system of n
“infinite-spin” or ‘“‘classical” Ising particles take on
values in the range —1 < x; < 1. We shall assume a
Hamiltonian

H* = =3 J x" + const, (4.24)
n

where the sum is over multiplicity functions, and

x* is defined in analogy with S* in (4.3a). In the

ferromagnetic case we require

0<J, < (4.25)

(infinite values are not permitted) and, if J, > 0 for an
infinite number of multiplicity functions, we shall
further demand that

SJ, <o (4.26)

to insure that the convergence of (4.24) is uniform.
The partition function and the thermal average of a
continuous function F are defined by

1 1 1
VA =j dxlf dx, - - f dx,e 2" (4.27)
—1 -1 -1

1 1
B = [ [ dn sz @2s)
-1 -1

We wish to regard the infinite-spin case as a limit
of systems with finite spin. Consider n Ising particles

10 There are a number of subtleties involved in the definition of
spontaneous magnetization; see the discussion in R. B. Griffiths,
Phys. Rev. 152, 240 (1966).

! In addition to the well-known case of nearest-neighbor inter-
action on a square lattice, for which the magnetization has been
calculated by C. N. Yang [Phys. Rev. 85, 808 (1952), but see the
comments in T. D. Schultz, D. C. Mattis, and E. H. Lieb, Rev. Mod.
Phys. 36, 856 (1964), especially p. 870), rigorous results are also
known for some three-dimensional lattices: C.-Y. Weng, R. B.
Griffiths, and M. E. Fisher, Phys. Rev. 162, 475 (1967); M. E.
Fisher, Phys. Rev. 162, 480 (1967); R. B. Griffiths, Commun. Math.
Phys. 6, 121 (1967).
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of spin p/2 with variables s, defined by (4.15) and
s* in analogy with (4.3a). The Hamiltonian is

H,= =3 J.s" (4.29)
u

while the partition function Z, and the thermal average
(F), are defined as in (2.11) and (2.12).

Theorem 4. If the J, satisfy (4.25) and (4.26), then

lim (3) Z,=Z*>0 (4.30)
p~w \P
and, if F is a continuous function,
lim (F), = (F)*. (4.31)

PO
The theorem is, of course, no more than the
observation that Riemann integrals are the limits of
approximating sums. Nonctheless, it is useful to write
it down, since it has some interesting consequences:

Corollary 4.1: When conditions (4.25) and (4.26) are
satisfied and » and A are multiplicity functions,

(M) = (%) 2 (). (4.32)
The result is obtained by combining Theorems 1 and 4.
Corollary 4.2: The bounds (4.19) and (4.23) also

apply in the limit p — oo, with §; replaced everywhere
by x, in (4.16), provided none of the J; are infinite.

The second corollary, in particular, is interesting,
since it provides a proof that on a square or simple
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cubic lattice, the infinite-spin model with nearest-
neighbor interactions exhibits a spontaneous magneti-
zation at sufficiently low temperatures. This result,
while it is not particularly surprising, has not (we
believe) hitherto been proved in a rigorous fashion.
It is possible that one might work out a direct proof
in analogy with the Peierls argument®? for the spin-4
case and gain additional insight into the mechanism
of the phase transition, but thus far we have not

succeeded.
5. CONCLUSION

One of the outstanding problems in statistical
mechanics at the present time is the extent to which the
many interesting results in the theory of phase
transitions for the spin-} Ising model are specific to
this model and to what extent they have a more
general application. We believe our results represent a
very modest beginning in answering this question for
the particular features of the Ising model with which
we have been concerned. The representations of
Ising particles with spin greater than } in terms of
those with spin  seems to be a useful tool and may
well have applications outside of those we have dis-

cussed.
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It is shown that the 10 gravitationally-conserved quantities defined in asymptotically flat, empty, space—
times are, when suitably modified, also conserved in asymptotically flat Einstein-Maxwell space-times.
Furthermore, the implied selection rules for transitions between stationary Einstein-Maxwell states

are the same as those in the pure gravitational case.

L. INTRODUCTION

It has recently been shown'? that in Einstein
vacuum gravitational theory there are ten quantities,
defined for asymptotically flat space-times, which are
absolutely conserved. In the Einstein-Maxwell theory
there are six conserved quantities which are the
analogs of the above for the Maxwell field. In a
stationary vacuum field, these ten conserved quantities
can be expressed as certain combinations of the mass,
dipole,and quadrupole moments. This fact leads to a
selection rule for purely gravitational transitions
between stationary states, namely, that if a field is
initially stationary and then becomes radiative, if it
is ever to become stationary again, the combination
of moments mentioned above must return to its
original value.

The purpose of this paper is to show that in
asymptotically flat Einstein-Maxwell space—times there
are 16 conserved quantities—the six mentioned in
Refs. 1 and 2 and, in addition, ten which are closely
related to the ten conserved quantities in the pure
gravitational case. In stationary states, these ten
quantities reduce to the same combination of moments
as in the vacuum case. Thus, we have the same selec-
tion rules for transitions between stationary Einstein-
Maxwell states as for vacuum states with additional
selection rules arising from the six Maxwell conserved
quantities.

II. ASYMPTOTIC BEHAVIOR

The conservation laws reported in Refs. 1 and 2
were arrived at by consideration of the asymptotic

* Work supported, in part, by the Aerospace Research Labora-
tories, Office of Aerospace Research, U.S. Air Force.

t Andrew Mellon Fellow. Present address: The University of
Texas, Austin, Texas.

} This work was done while the author was at Yeshiva and
Princeton Universities.

! E. Newman and R. Penrose, Phys. Rev. Letters 15, 231 (1965).

2 E. Newman and R. Penrose, Proc. Roy. Soc.(London) 305, 175
(1968).

behavior of the fields in question. We shall, therefore,
investigate the asymptotic behavior of the Einstein—
Maxwell field using the method of Newman-Unti
(N-U).? We adopt essentially* the same coordinate
and tetrad conditions used there, where, of course,
we use the field equations and Bianchi Identities
appropriate to the Einstein-Maxwell field as given
by Newman and Penrose.® Using the results of
Kozarzewski® for the asymptotic behavior of the spin
cocefficients and the peeling-off property of the fields,
one obtains by the method of N-U the following
asymptotic form for the Einstein-Maxwell field. If

Yo = yor ° + ypr~* + 0(r™), (1)
$o = dor ° + dort + 07, )

and the various u, 6, ¢ derivatives of these expressions
also hold, then

p = vhrt + Oyh + 3830 + 0,
Py = Yo + By + 241D~ + 0™,

3 E. Newman and T. Unti, J. Math. Phys. 3, 891 (1962).

4 Some slight changes in the notation from that of Refs. 3 and 8
are being introduced here (and in Ref. 2), although agreement with
Ref. 7 is being maintained. This results in a somewhat simplified
appearance of most of the equations; in particular, the removal of
all factors of (2)4. To emphasize that the notation has been altered
from that of Refs. 3 and 8, the retarded time and radial coordinates,
respectively, are being denoted here by u and r, with lower case
y's for the Weyl tensor components. Indicating by primed letters
those quantities defined in Refs. 3, 8, the translation to the present
notation is achieved by

w =2, r= 2—‘1‘1:, W = 2&1!‘, mt = mt, nt = 2-tpu;

3
@

thus, we have
\P‘; = 2&12‘n)wm l}/':»’ = 2“*(3_'""}’:" l}f;n’ = 2—;14+m)¢7,
@, =28, O = 2hmgn, B = 2 beimdn,
o =2, o =21, ¥ =4, ¢ =2-1¢°,
@ =2k, §=p,
y=2%, V=21, p=2% v=ph,
& =& XY =2txi U= {U.

5 E. Newman and R. Penrose, J. Math. Phys. 3, 566 (1962); 4,
998 (1963).
¢ B. Kozarzewski, Acta Phys. Polon. 27, 775 (1965).

’

=2, 7'=1, & =a,

o = 2%,
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v = ¥ + By + Figr™ + 0™, (5)
vy = 0 + Bydr? + 007, (6
L= %%+ 5l + 07, Q)
$o = ar™ + Bir " + O( ™), )
p=—1"1—0"%"""2+ 007, 9
o= a2 + (7 — dypdrt + 0(r™), (10)
a = o’ + &%+ %% + 0(™Y), (11)

B = —a%" — %% — (6°3%" + D 4+ O™,

(12)

= —}yir?

+ $30°F — DY) — 44D + 0(r™),
A=g"%" + 5%

+ (0°3°%" + 36"y) — $dodr ™ + O™, (14)

u= —"I_l _ (005'0 + ,'pg)r—2

(13)

— (0°° + 1Byl + S + 007, (15)
y = —hyar”
— 3(28y] — <’} + &P + 64160 + 07,
(16)
v = —yir? — (38h + Dt + 007, (17
U= —1—3s+ g
— 3B} + 5% + 641D P+ O(r™),  (18)
X® + iX%sin 0 = Lyl + O™, (19)
X3 and X* being real,
E=r1—0"r?4+ %2+ 0", (20a)
—iftsin O =1 4+ 6% 4+ %% + O(r™), (20b)

w = =86 + (6%85° — }uD)r 2 + O(r™3),

(21)
where
o’ = —}cot B, (22)
P — P = 8%° — 8%° + %° — %", (23)
92 = b3, (24)
¥ = —&" (25)

In the above, the “surfaces at infinity” (xr = oo,
u = const) have been chosen to be spheres with the
usual angular coordinates 6, ¢. [Actually only Egs.
(19), (20), and (22) depend on the choice of angular
coordinates.] The 9 notation of Newman-Penrose’

7 E. Newman and R. Penrose, J. Math. Phys. 7, 863 (1966).
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has also been used. Further terms could easily be
calculated. The time development of the solution is
determined (with the dot denoting 0/0u) by

99 + Byl — 30y — 34062 =0,  (26)
§t — 45(c"y?) + BOyY + 42543
—80°$040 — 4dydr =0,  (27)
P + By — 208 — 24042 =0,  (28)
¥+ 0yf — oyl — 4342 =0, (29)
$p + B4) — a°$3 =10,  (30)
b5 + B8PS — 2(c°$D =0, (3D
¢+ 0845=0, (32

and the corresponding equations [see Eqs. (56), (57)]
for the remaining ¥, $m.

In these equations the quantities y, ¢f' (m =
0,1,2,---), v}, v} + 93, #7, as functions of 0, ¢,
and the quantities o® and ¢3 as functions of u, 0, ¢
are regarded as the given initial data with the remain-
ing quantities expressed in terms of them. Thus, the
data needed to determine a solution of the Einstein-
Maxwell equations is the null-surface data for the
Einstein vacuum equations together with the null-
surface data for the flat-space Maxwell equations.?
Also, the asymptotic symmetry group is just the
Bondi-Metzner—-Sachs (B.M.S.) group.®?

We shall make use here of the results established
in Ref. 2 on the spin weight of each of the 9’s and ¢’s,
the expansion of a spin-weighted quantity in series of
spin-s spherical harmonics’ and some properties of 8.
In particular, the relations

f ,¥..B7dS =0 and f Y,.54dS =0 (33)

will be of great value here, where 7 is any quantity of
spin weight s + 1 and ¢ is any quantity of spin weight
—s — 1 defined on the (6, ¢) sphere and dS =
d sin 8 de. [One way to prove Eq. (33) is to integrate
by parts and use the fact? that &, ¥, ,, = 0.]

As an example of the techniques to be used, the
generalized Bondi-Sachs mass-loss theorem for the
Einstein-Maxwell theory!! can be easily obtained.
The expression

= "J‘oYo,o('Pg + 005'0) ds

defines, up to a numerical factor, the Bondi-Sachs

(34

8 A. Janis and E. Newman, J. Math. Phys. 6, 902 (1965).

? R. K. Sachs, Phys. Rev. 128, 2851 (1962).

10 T, Morgan and J. Winicour, Bull. Am. Phys. Soc. 9, 424 (1964).

11 R, Penrose, Phys. Rev. Letters 10, 66 (1963); in Relativity,
Groups and Topology, C. DeWitt and B. DeWitt, Eds. (Gordon and
Breach, Science Publishers, New York, 1964).
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total mass!®18 at retarded time u. (Of course, (¥ =
1n—%) This M is real by Eq. (23) since

J oY 0% dS = 0.

From Eq. (29) we get

M= —foyo,o(d'oa'0 + ¢g$g) as +J‘0Yo,061/)g ds. (35)

The last term on the right vanishes (¢} having spin
weight —1), so if we integrate over u from u, to u,
(u; > 1) and use the fact that ¢%6° + ¢$2 is non-
negative, we obtain

M|y < 0.

The Newman-Unti mass?

_JGYO’O Re 1/)(2) dS

differs from M only when ¢° # 0, so in any transition
between states with ¢ =0 (e.g., between states
stationary in the chosen coordinate system), this mass
will likewise decrease.

III. CONSERVATION LAWS

Using Eqs. (31) and (32), we can easily obtain the
conservation laws associated with the Maxwell field.
To obtain the equation of charge conservation we
multiply Eq. (32) by oY,, and integrate over the
sphere to obtain

d
4 [udtas =~ [ stas. 09

By Eq. (33), the right side of this equation vanishes

and we have

e= J oYo,08? dS = const. (37)
This is proportional to the charge (+i x “magnetic
charge”). A similar thing can now be done to Eq. (31),
namely, multiply it by , ¥; ,, and integrate over the
sphere to obtain
4 f Y, b dS = f FoaBAds,  (39)
du
where 4 = —3¢) 4 20°{ is a quantity of spin weight
2. Again, by Eq. (33), the right side vanishes and we
have

F, EJIYI,M¢3 dS = const. 39)

The real and imaginary parts of F_,, F,, F, are the

12 H. Bondi, M. G. J. van der Burg, and A. W. K. Metzner, Proc.
Roy. Soc. (London) A269, 21 (1962).
13 R. K. Sachs, Proc. Roy. Soc. (London) A270, 103 (1962).
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six conserved quantities for the Maxwell field
described earlier,™* which in flat space-time would
be associated with the presence of incoming electro-
magnetic radiation.

One can obtain the ten conserved quantities associ-
ated with the gravitational field by considering Eq.
(27), which we write as

v — 45(c’y?) + BBy) + 4R = 0, (40)

where
R = §i54p — 20°4161 — duds.  (4D)
We first note that if ¢ is a quantity of nonnegative

spin weight s, then a unique inverse to the operation 3
can be defined on this quantity if and only if*

f o7, b dS = 0.

This can be seen by expanding ¢ in a series of spin-s

spherical harmonics and using the properties of 5.
Thus, one can uniquely define

5UH — £) and 5 — F),

(42)

where
E= -OYO,O (43)
and
+1
F= E Fru1Yim. (44)

The explicit expression for these quantities in an
expansion in spin-s spherical harmonics is

o) 4

5 _ ) = — _“_ﬂ__lylm 5
$hi-BH=-3 3 [+ Dt )
and
S_1, 1 hd ! ﬂlm
54t — F) = — pT—— Y (T
bo-P=-2 3 (1 — 1+ 2t
(46)
where

Xm

Efo Yl,m$g ds

4 More generally, for an arbitrary ¢, we can define linear opera-
tors 8 and 37 —the * ‘generalized inverses™ of 8, B, respectively—by

8! Yim=(—5+ D) + 92V, if —s<l,
=0, if —s = 1,
81 Yim=—U—s) Ml +s+ 1LY, ifs<],
=0, ifs=1

These satisfy 85Ts =135, ofost =5t 5’5 =35, sst =575,
353 =35, 5'55" = 5. [Compare R. Penrose, Proc. Cambridge
Phil. Soc. 51, 406 (1955), for the case of matrix generalized inverses.]
The expressions B 1(¢l E)and 5~ Ml —
written concisely as 3'¢¢ and 31,

F) used here can then be
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and
Bim Efl )—’1,m¢(1) ds.

Using these results and also Eqs. (31), (32), and (41),
we obtain
d

R=—

[F5($ — E) — $55 (b — F)]
du

— B[ (¢h — F)].
Then Eq. (40) can be rewritten as

(47)

E)y — 4% (¢ — F)] = 80,
(48)

where Q stands for an expression of spin weight 3.
Hence, by Eq. (33), if we multiply by ,¥,,, and
integrate over the sphere, we obtain

A1 4 aFE(R —
u

Gy = f Vo mlvh + 4F5F — £)
— 43%7Y($t — F)] dS = const. (49)

The real and imaginary parts of G_,, G_,, Gy, Gy,
G, thus define ten conserved quantities for asymptotic-
ally flat Einstein-Maxwell fields. They are the same
as the N-P gravitationally conserved quantities when
the Maxwell field vanishes. Note that we can rewrite
(49) in the alternative form

G = j Vol + 455(H — E)
— AES Yt ~ F)1dS; (50)

the difference in the 1ntegrands in (49) and (50) being
of the form , ¥, m6(5 1AES—IB) If we add (49) to (50),
we get a third, more symmetrical, expression

G = f 2 Vo ulvh + 2(88 + FISHE — B)
— 2 + E)5 ¢y — F)]dS. (51)

The quantities G,,, F,, are invariant also under the
supertranslations of the B.M.S. group. This does not
follow from the argument given above, but the result
can be obtained by use of an alternative technique.!5-2
The full details of this argument will be given else-
where; in the case of F,,, the argument is given in its
essentials in Ref. 2. For part of the argument of the
next section, we shall, in fact, require this super-
translation invariance of the G, and F,,, so we shall
have to assume this result here.

15 R. Penrose, in Relativity Theory and Astrophysics, J. Ehlers, Ed.
(American Mathematical Society, Providence, R.1., 1967), Vol. VIIIL.
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We propose to establish a connection between the
G, F, and multipole moments of the fields in sta-
tionary states. This will then define “selection rules”
for transitions between such states. Now, by an
argument given in Ref. 2, we can show that, for any
stationary system, allowable coordinates can be
chosen so that ¢® = 0 and for which there is no u
dependence. Then we shall have ¢ = 0 [see Eq. (29)].
We can always obtain such coordinates by applying a
B.M.S. transformation to the coordinates of any
allowable N-U stationary system. (This may involve
a supertranslation, however, so that the indentification
of the F,,, G,, strictly requires their aforementioned
supertranslation invariance.) Equations (31) and (30)
now become

5543 =0, whence 8¢S =0,

34 = 0. (52)
These can be immediately integrated, yielding
+1
= 2 lAm 1Y1m,
$1 = eoYo,. (53)

Now, using this result, Eqs. (28), (27), and (26)
become
dys =0,
Iyl =0, whence Byl =0,

5yy =0, (34)

which integrate to
'Pg = —M Y0 = %3,

z Bm 2Y2 m>

m=—2

= z Cm 1Y1,m'

m=—1

(55)

In order to determine the angular dependence of
v} and &g, it is necessary to obtain the equations for
the time development of %3 and ¢. This can be done
by a straightforward but tedious calculation along the
same lines as was used to obtain Egs. (26) to (32),
yielding

P = — 4[5y} + 69 + 1590p8 — 10ydy?
+ 64845 — 25°F3850] + Q,

where (2 is a quantity that vanishes when

=4 =0

(56)

and

b = —3[B04) + 48 + 3(9d + PNFs — 49301 410,
(57)

where Il is a quantity that vanishes when o® = ¢ = 0.
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In the stationary case with the above choice of
coordinates, Eq. (57) yields

B8y + 4y = dyldl — 6pige. (58)

This can be integrated by noting that the right side can
be expressed as a sum over ; Y; ,, and then using the

properties of 85 on a quantity of spin weight 1 to
obtain

+2
¢(§ = 2 Dm 1Ya.m + Ha

(59)
m=—2
where
H = $ly? — 3yids.
The Maxwell conserved quantities are
F, = f ToHdS (60)

[and, in fact, H = F; see (44)).

The e, C,,, M, and A,, are, respectively, propor-
tional to the electric (47 X magnetic) charge, mass
dipole moment (+i X angular momentum), mass,
and electric (+i X magnetic) dipole moment. Thus
for stationary fields, the Maxwell conserved quantities
are explicit quadratic expressions in these 4 moments.
(In fact, essentially: mass x electric dipole —
charge x gravitational dipole; this being an origin-
independent expression.)

Finally, to obtain an expression for ¥ in stationary
states, we use Eq. (56) (noting that §¢) = 0) to obtain

8Os + 65 = 10(y)" — 15¥0ys — 6618¢%. (61)
This can be integrated by noting that the right side
can be expressed as a sum over ,Y; ,, and using the

properties of 85 to obtain

Vo =2 JmoYam + 3(¥D* — Sy0ys — $W5. (62)

EXTON, NEWMAN, AND PENROSE

We can now use these expressions to evaluate the
conserved quantities in stationary states. From Egs.
(45) and (46) we have that in stationary states

5 —E)=0
and
5o~ F) = =33 Dp:Yom = —10¢5 (63)
and, thus, Eq. (51) becomes
G = f Yonlvh + B4 dS,  (69)
which yields by Eq. (62)
G, = f .7, K dS, (65)

where
K = 5y — $ylvs.

Thus, in stationary states, the conserved quantities
can be expressed as exactly the same combination of
the mass, dipole moment, and quadrupole moment
as in the gravitational case. This means that the
implied selection rules for the transitions between sta-
tionary states of the Einstein-Maxwell field are the same
as those between stationary states of the vacuum
gravitational field but with additional selection rules
imposed by the Maxwell conserved quantities [Eq.
(60)]. Whether or not transitions between exactly
stationary states'® are possible at all, however, even
when K and H are both unaltered, remains an open
question at present.

18 It seems unlikely that transitions between two different states
can ever be achieved if each is to be without time dependence and
with ¢® = 0 in the same coordinate system. This is indicated by some
work of Unti on axially symmetric vacuum fields. Thus, it is import-
ant that we have supertranslation invariance for the F,, and G,
for the above selection rules to have any content.
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Calculation of Wigner and Racah coefficients for the group SU4) = [SU(2) x SU(2)] make it
possible to perform the spin-isospin sums in the cfp (fractional parentage coefficients) expansion of the
matrix elements of one- and two-body operators in the Wigner supermultiplet scheme. The SU(4)
coefficients needed to evaluate one- and two-particle cfp’s, the matrix elements of one-body operators,
and the diagonal matrix elements of two-body operators are calculated in general algebraic form for
many-particle states characterized by the SU(4) irreducible representations [yy0], [y y — 10], [yy1],
[yi1], [yy — 1y — 11, [y10], [yy y — 1], [y00], and [yyy], whose states are specified completely by the
spin and isospin quantum numbers (y = arbitrary integer). Applications are made to the calculation of
the matrix elements of the complete space-scalar part of the Coulomb interaction and the space-scalar
part of the particle-hole interaction for nucleons in different major oscillator shells.

1. INTRODUCTION

Since the decomposition of a many-nucleon wave-
function into its space times its spin—isospin part forms
a good starting basis for shell-model calculations for
many nuclei up to and through the first half of the
2s, 1d shell, a detailed study of the Wigner super-
multiplet scheme may still be in order, more than 30
years after the classic work! of Wigner, in which he
first introduced the concept of spin-isospin super-
multiplets and classified the many-nucleon spin—
isospin wavefunctions according to the irreducible
representations of the group SU(4). The recognition
that the spin-isospin part of the one- and several-
particle fractional parentage coefficients (cfp)? can be
identified with simple Wigner coefficients for the
group SU(4) leads to the possibility of performing
spin-isospin cfp sums in a general way. In all nuclear
matrix elements, the dependence on the Wigner
supermultiplet quantum numbers, total spin, and
isospin can thus be expressed directly by factors which
are given simply in terms of SU(4) Wigner and
Racah coefficients. Because of recent general interest
in the unitary groups, much detailed work3™ has been
carried out on the groups U(n). In particular, Bieden-
harn and Louck® have shown that complete algebraic
formulas for the matrix elements of elementary oper-
ators (needed for the calculation of many-particle
cfp’s) can be read off at once from patterns

* Supported by the U.S. Office of Naval Research, Contract Nonr.
1224(59).

t Present address: Physics Dept., University of Pennsylvania,
Philadelphia, Pennsylvania.

! E. P. Wigner, Phys. Rev. 51, 106 (1937).

2 H. A. Jahn and H. van Wieringen, Proc. Roy. Soc. (London)
A209, 502 (1951).

® L. C. Biedenharn and J. D. Louck, Commun. Math. Phys. 8, 89
(12615{ Moshinsky, in Group Theory and the Many Body Problem,
{ig.é\él)eeron, Ed. (Gordon and Breach, Science Publishers, New York,

 P. Carruthers, Introduction to Unitary Symmetry (Interscience
Publishers, Inc., New York, 1966).

assigned to these operators by means of a so-called
pattern calculus. Unfortunately, these results cannot
be applied to the Wigner supermultiplet scheme, since
they apply only if the symmetry classification is given
by the canonical chain of unitary groups, such as
U4)y=> UQB)> U@2)=> U(1). (In the classification
scheme based on a canonical chain of subgroups, the
states of a given irreducible representation are com-
pletely specified by the representation labels of all the
subgroups in the chain.) Unfortunately, the group
chains of actual physical interest in spectroscopy
rarely coincide with these mathematically natural or
canonical chains. In the Wigner supermultiplet classi-
fication, the physics dictates that the representations
of SU(4) be reduced according to the subgroup
SU(2) x SU(2), where the direct product of the two
SU(2) groups is generated by the commuting spin and
isospin operators. Neither of these is related to the
group U(2) in the canonical chain. Since the group
SU(4) and the 6-dimensional rotation group O(6) have
Lie algebras of identical structure, the Wigner super-
multiplet scheme can also be considered from the
point of view of the group 0(6). The canonical group
chain O(6) > O(5) > 0(4) > 0(3) @ 0(2) is again
not the physically relevant one. Although either
ordinary spin or isospin can be put into correspond-
ence with the representations of the group O(3) in this
chain, the other is not a good quantum number in this
canonical classification scheme for O(6). The calcu-
lation of the needed supermultiplet Wigner coefficients
must thus proceed from the specific properties of the
group chain SU4) > [SU(Q2) x SU(2)}. Such calcu-
lations are complicated by the state-labeling problem.
In the most generalirreducible representation of SU(4),
the states are not completely specified by the spin and
isospin quantum numbers alone. Although the addi-
tional operators needed for a complete classification
of the states of a supermultiplet have been constructed
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by Moshinsky and Nagel,® the algebraic structure of
the eigenvectors associated with such operators is
rather complicated and makes it very difficult to derive
general algebraic formulas for the Wigner coefficients
for the group SU4) = [SU(2) x SU(2)], valid for
all irreducible representations.” With relatively few
exceptions, however, the SU(4) representations of
practical importance for shell-model calculations can
be shown to fall into a few simple classes in which
states of a given spin-isospin (S, T) occur at most
once. By restricting the discussion to those irreduc-
ible representations in which all states are specified
completely by the spin and isospin quantum numbers,
it is possible to give general algebraic formulas for the
SU@) Wigner and Racah coefficients needed to
exploit to the fullest the properties of the group SU(4)
in the study of nuclei. By restricting the irreducible
representations to those of the above type, a further
simplification is achieved in connection with the
multiplicity problem associated with the fact that
Kronecker products of two SU(4) representations are,
in general, not simply reducible. For the irreducible
representations of the above type and the Kronecker
products which occur in nuclear model calculations,
these multiplicities are never greater than two.

Our general approach is similar to that of a recent
contribution by Kukulin, Smirnov, and Majling® on
the Racah algebra of SU(4). However, the aim of the
present work is quite different insofar as it attempts to
give explicit formulas, in general algebraic form, for
most of the SU(4) coefficients needed in shell model
studies. The aim is not only to facilitate calculations
but to derive explicit algebraic formulas which make it
possible to study general trends in the dependence of
nuclear matrix elements on the Wigner supermulti-
plet, spin, and isospin quantum numbers.

To establish the notation, a review of the properties
of SU(4) and the supermultiplet scheme is given in
Sec. 2. In Sec. 3 the irreducible representations which
are completely specified by the spin and isospin
quantum numbers are identified. Explicit constructions
are given for their state vectors in terms of a sequence
of step-down operators acting on the state of highest
weight. In Sec. 4 the general properties of the SU(4)
Wigner and Racah coefficients are discussed together
with the methods used in the actual calculation of the
coeflicients required for shell-model studies. Tabula-
tions are given in a set of appendices. Some applica-
tions are given in Sec. 5. Since the discussion is
restricted to the spin-isospin parts of the many-

¢ M. Moshinsky and J. G. Nagel, Phys. Letters 5, 173 (1963).

7 See M. Resnikoft, preprint, SUNY at Buffalo (1968).

8 V. I. Kukulin, Yu. F. Smirnov, and L. Majling, Nucl. Phys.
A103, 681 (1967).
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nucleon wavefunctions, the detailed applications
necessarily involve the discussion of physical oper-
ators which can be approximated by their complete
space-scalar parts. The Coulomb interaction, for
example, is rather insensitive to the details of the
space parts of the wavefunctions. Matrix elements of
the space-scalar part of the Coulomb interaction are
calculated in Sec. 5 in order to study the dependence
of the Coulomb energy on the Wigner supermultiplet,
spin, and isospin quantum numbers.® Since a space-
scalar approximation to the particle-hole interaction
may give a good estimate of the full particle-hole
interaction energy in 2s, 1d shell nuclei,’® matrix
elements for such a particle-hole interaction are
derived in general algebraic form through the SU(4)
Wigner coefficients which are tabulated in the appen-
dices. Even if an operator cannot be approximated by
its complete space-scalar part, the full expression for
its matrix elements in terms of cfp expansions can be
simplified since the spin-isospin part of the cfp sum
can be performed so that the over-all dependence on
[f], S, and T'is given by the SU(4) Wigner and Racah
coefficients of the type tabulated in the appendices.
By extending these techniques to the unitary groups
needed to classify the space parts of the wavefunctions,
the full cfp expansions can in principle be summed in
general. The resultant interplay between the super-
multiplet and spatial quantum numbers will be dis-
cussed in a future publication.

2. PROPERTIES OF SU(4) AND THE
SUPERMULTIPLET SCHEME

2.1. Infinitesimal Operators

The supermultiplet scheme is based on the four
spin—charge states of a single nucleon |mm,). These
are

(D =1+3+4), [2)=[+3 ),
By=1-3+d, 4 =1-3-%. )]

(Note that the first label indicates the spin, the second
the isospin quantum number.) These states can also be
expressed in terms of the single nucleon-creation
operators a,, where o stands for the full set of space-
quantum numbers, e.g., « = nlm;,and i =1, 2, 3, or
4 stands for the spin—isospin quantum numbers mn,
in the sense of Eq. (1), such that |«, i} = al, |0). The
infinitesimal operators which generate the unitary
transformations in the 4-dimensional space can be
built from these fermion creation operators and their
® K. T. Hecht, Nucl. Physics A114, 280 (1968).

10 K. T. Hecht, P. J. Ellis, and T. Engeland, Phys. Letters 27B,
479 (1968).
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TasLe I. The infinitesimal operators (Infin. ops.).

SU(4) irreducible

Infin. SU@) 0(6) tensor components

ops. generators generators (standard phases)
T(S.MSNTMT

So %(An + Azz - Asa - Au) "15 T([lzol)l(ilm)

TO é‘(All - AZZ + ABS - A44) J56 T((lzolll(ll))

Ew(Y) %(An — Ay — Ags + A44) _ Jat —T(oo)(oo)

S, (1/V2)(A1s + 4a0) VDU + ia) —Tm,mo,

s (1/V2) (s + Asa) AV — iT25) T oo

T, (/Y2412 + 40) AV + iJas) ~ Tty

T. (1/V2)(An + Ass) UV2)Uss = ilae) T(.,%‘fu_n

Ey (1/V2)(Ars — Az (YD + iT2) T(u)(w)

E_y (1/\/5)(/431 — As) (—1./\/%)(-’14 — iJyq) "‘Tu 1)(10)

Ey /YD (A — As) (=ilVDWUss + iT55) Thod,,

Ey, (1/V2)( Ay, — As) Y DU ss = iT5e) —THa-

E. A (s + ias) + i(J1s + 124)] —T([ﬁ)l(]u)

E,, Ay %[(Jls - ist) - i(JIB - ist)] - (111,11 1)

E1~1 A23 %[—(115 + iJ25) + i(JIB + i"26)] T(lzll)l(l 1)

En Ass — (s — iJag) = i(U1g — iJ20)] T 0

conjugate annihilation operators:

4. 2)
They contain the three components of the spin
operator S and the isospin operator T together with
the nine components of the operator
E =3 (o)) a.a;,

[5%]

t ;o
7 Bt zaaiam" L] = 1
a

3)

where 6, T are the single-particle Pauli spin and
isospin operators. As a specific example, let us take

1
El—l = 2 <m;m;‘ 0+T— |msmt> aamg’m;’aamsmt

amg’*my

.
= Z (.33, 4}

= Ay. 4)

The 15 operators S, T, and E generate the group
SU(4). Together with the number operator N,,
> 4,;, they generate the full group U(4). The relation
between the A,; and the full set of Wigner super-
multiplet operators S, T, E is shown in Table I. The
components of S, T, and E are all normalized such
that the structure constants are +1 or 0. The com-
mutation relations for the operators follow from the
anticommutation relations of a' and a. They are given

by

[Au> Akl] = 6jkAil - 6ilAki' &)

Since the groups SU(4) and O(6) have Lie algebras of
identical structure, the 15 infinitesimal operators can
also be expressed in terms of angular-momentum

operators J;; (i,j=1,---,6) which generate rota-
tions in a 6-dimensional real space. The specific rela-
tionship is shown in Table I. The spin and isospin
spaces have been chosen as the (1, 2, 3) and (4, 5, 6)
3-dimensional subspaces of the full 6-dimensional
space.

2.2, Irreducible Representations

The irreducible representations of the group U(4)
can be specified by the permutation symmetries of the
n-nucleon spin-isospin functions. These symmetries
are characterized by Young tableaux of 4 rows or
partition numbers [f; f,fsfi] on n objects, where f; are
integerssuchthatf; + fo + fs + fi =nandf, > f, >
fs 2 fs 2 0. The partition number f; specifies the
length of the ith row of the Young tableau. Since a
totally antisymmetric 4-particle spin-isospin function
is invariant under unimodular unitary transformations
in the 4-dimensional space of the single-particle
states, columns of four can be removed from the
Young tableaux in restricting the irreducible repre-
sentations to those of the group SU(4). The irreducible
representations of SU(4) are thus specified by 3-
rowed Young tableaux or the partition numbers
[fi = fi> fo — fa, fs — fi]. The irreducible representa-
tion labels are often abbreviated by [f]. (For economy
in writing representations, [y00], [yy0], and [yyy] will
sometimes also be denoted by [y], [y*], and [y?],
respectively.) The irreducible representations of SU(4)
can also be specified by the highest weights of the
three commuting operators Sy, Ty, Ey of the rank 3
group. In an n-particle spin—isospin function of the
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above symmetry, there can be at most f; particles in
state [1); of the remaining particles there can be at
most f, particles in state |2); etc. The highest weights
associated with the operators Sy, Ty, Eo are thus

given by
P=3fi+fi—fs— S
P=¥f—fotfs = 1) ©)
Pr=3h—fo—fa+ /0

where P = maximum value of S, (and therefore §)
contained in the representation; P’ = maximum value
of T, for a state having S, = P; and P” = maximum
value of E,, for a state with S, = P and T, = P'. The
three supermultiplet quantum numbers (P, P’, P")
also specify the O(6) irreducible representations
according to the standard Weyl-Gel'fand labeling
scheme.'! (To avoid confusion, O(6) quantum num-
bers (P, P’,P") will always be enclosed in round
parentheses, SU(4) quantum numbers [f] by square

brackets.)
2.3. State-Labeling Problem

Since the group SU(4) [or alternately O(6)] is a
15-parameter group of rank 3, the states of a given
irreducible representation are, in general, specified
completely!? by #(15 — 3) or 6 quantum numbers in
addition to the irreducible representation labels. The
6 additional quantum numbers could in principle be
furnished by the irreducible representation labels of all
the subgroups in one of the canonical subgroup
chains (Fig. 1). In the chain based on U(4), however,
neither the spin nor the isospin operators can be put
into correspondence with the subgroup U(2). (Neither
can'the operators S nor T be identified with 4,;,
i,j = 1,2, or some other pair.) In the chain based on
0(6) it is possible to identify m,, and m,, with either
the quantum numbers SMg or TM . According to
the specific choice of Table I, my = S, my, = Mg,
but in this scheme the operators T? and T, are not
diagonal. A complete classification of the state vectors
for SU4) = [SU(2) x SU(2)] must thus be given by a
set of 6 commuting operators which must include,
besides S2, §,, T?, T,, two additional operators.
Unfortunately, the eigenvalues of the two additional
operators cannot be simply related to irreducible
representation labels of a subgroup of SU(4). In the
most general irreducible representation of SU(4), the
algebraic structure of the eigenvectors associated with
these operators is therefore complicated. Moshinsky

1 1. M. Gel’fand, R. A. Minlos, and Z. Ya. Shapiro, Representa-
tions of the Rotation and Lorentz Groups and their Application (The
Macmillan Company, New York, 1963), p. 353.

12 G. Racah, “Group Theory and Spectroscopy,” lecture notes,
Princeton (1951); CERN reprint 61-8 (1961),
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A B fa P PP

mgy Mgy Mgy Mgy Mgy

My Mgy my, My
myy msy

my,

@ (b)

F1c. 1. Weyl-Gel'fand canonical state labeling schemes based
on the group chains (a) U(4) > U@3) > U(2) > U(1) and (b)
0(6) @ O(5) @ 0(4) @ 0(3) @ 0(2). The quantum numbers m,;
label the irreducible representations of U(n) in (a) and O(n) in (b).
Note that f; = my and (P, P/, P") = (mgy, mgy, mgg). The my;
satisfy the branching rule m,; < m,_y ¢ < my, 5. For Uln) the my,
are positive integers. For O(n) they are positive integers or half-
integers with the exception of myy, mye, and mgz, which may be
negative; for these the branching rule becomes |y i < mgpq k-

and Nagel® have suggested that the additional oper-
ators be chosen as
Q= SE;T;,
O = SiSJ'EikEJ'k + EkiEij iT i
= €iiu€imnSiEimErn Ty, T)

where i, j,--- stand for Cartesian components
(rather than the spherical ones of Table I) and
summation convention is implied by repeated indices.
Because of the algebraic difficulties involved in the
eigenvalue problem associated with operators such as
Qand @, it has not been possible to derive expressions
for the Wigner coefficients of the supermultiplet
scheme in a completely general way. In actual practice,
however, most of the Wigner supermultiplets of im-
portance for shell-model studies fall into a few special
classes for which the spin and isospin quantum
numbers are sufficient for a complete classification.
The present work will be restricted to the study of such
irreducible representations. For these the needed
SU(4) Wigner and Racah coefficients can be calcu-
lated.

2.4. Construction of State Vectors; Step-Up and
Step-Down Operators
In the most general irreducible representation of
SU(4), the state vectors (or many-particle spin-
isospin wavefunctions), can be denoted by
\[fJop, SMsTMyp), ®
where @ and ¢ are the eigenvalues of the operators
Q and @. In the following sections the discussion will
be restricted to those irreducible representations for
which all state vectors are uniquely determined by the
quantum numbers SMgTM . For these the quantum
numbers @ and ¢ are redundant, and the state
vectors can be denoted by

|[f1SMsTMy). €)
For these representations the full set of state vectors

can be constructed by a successive application of
step-down operators acting on the state of highest
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TasLE II. The step operators Ogg.

On=Ey, 1

O, = E, S_Eyy o

01 01 + “S.,+1
1

Oy =Ew+ T_E, T, +1

1 1
Ow = Ey + S_E, E‘_ﬁ + T‘EMT;_-}-_] + S.T_E;, (So

1
O,,=E_ —TE, To

1
O.n=E_;; —S_Ey -S—o

1
+ DT+ 1)
1

— 2 P
PEuron, 7 1)

1

— 2 e
SEn5as, ¥ D

Ou_y = Evs + S_Ery (E:_—l—) - T—EW%, = TEn WT_:TI)
— S_T_Ey mﬁ—l)- ~ T2S-En g 1)1‘1(2T,, +1

O_io=FE_1w+ T-Ey ("TT:-T) - S-Eoosl,, = S 5(233?_15
= 5-T-Ew E(_Tol-'k_l—) ~ TS Eary 1)st(2s., 1

1

1
0_1_1 = E—l—l ha T_E_lo 7.; - S_Eo_l ?0 - TEE_

1
18028, + 1)
1
X $,(28 + DT,

1
X S Ta2S, + D@T, + 1)

— S*E,_

+ S_T2E,, 5,

1
NTQRT, + 1)

1
+ S_T_E, m + S:T_E,,

1
3 T2
TGT, ¥ 1) + S*TE,,

weight. Since the properties of angular-momentum
eigenvectors are well known, it will be sufficient to
construct the state vectors with Mg =S, M, =T.
It will sometimes be convenient to use the short-hand
notation (employing curly brackets):

IFUSTY) = |[f1SMg = S, TMyp = T).
A step operator O, is defined by

Oy ILFUST}) = NS, T IS + o, T + B},
(11)

(10)

where

NYXS, T) = KIf ST} 010, ILFUSTHIE
= (IS UST}H O gOus ILFUSTHE  (12)

NS, T) =N S+, T+p). (13

The choice of the positive sign for the normalization
factors, Eq. (12), specifies the phase convention used
in this investigation. The step operators O,; must
satisfy the commutation relations

[S+, Oup) ILFHST}) =0,

[T, Oyl I[fKST}) = 0. (14)

These equations are sufficient to construct the oper-

and

ators. There are 9 basic step operators corresponding
to the 9E generators. The operators are shown in
Table II. [The operators O,; are not unique, but the
lack of uniqueness can involve only trivial additional
factors or combinations. For example, if O, satisfies
Egs. (14), so does O, + O'T,, where O’ is any
arbitrary operator. The lack of uniqueness in O,, can
be illustrated by noting that O, ,0,, = Oy, # 0,,.]
It will be convenient to express the nine E generators
in terms of the O operators. The results are shown in
Table III.

2.5. Irreducible Tensor Operators; Tensor Character
of the Generators

The 15 infinitesimal operators S, T, and E,, trans-
form according to the regular representation [211]
and have spin-isospin spherical tensor character
ST = 10, 01, and 11, respectively.

The components of an SU(4) irreducible tensor
operator Tl .,y can be defined by the com-
mutator equations

[Eab s TEng)(TMT)]
=SZ ({fI(S’Mg + a)(T'My + b)|
o

X Eq [[fISMeNTM 1) T8 sterarcr sterny  (15)
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TasLe 11, Expressions for the E operators in terms of the O operators.

E,, =0y, 1
EM = 001 - S—Ollm
1
Ejp= 0y — T Oy T+
E. =0, SO .___1._ T 0O, ———1-———+STO !
00 = oo S F 1) (T, 4+ 1) TS, + 1T, + 1)
1 1
— Ty 2 T 1 1N 11N
Biy= 0+ TO00 g = POum IRGn 71
1 1
— —_— 52 7o L 1o LN
En= 01+ 8-0u g = 800 e @8, 1)
1 1 L
Epy =001+ TOng = S0 51~ 75O s 5y

1

— 2, P

TO0n om0 + 1)
1

E_j0=0_10 + 504 5 T_0_
0

1
—_ 2 — e
S200 G5, ¥ DG, + D

1 1
E—l—l = 0_.1._1 + S_Oo_l §0 + T_O_lo 7.,; + T_S_

1
(S + DS + 1)
1

- $20,

+ S_T?

1
T+ D
+ T.8520,, g

0

+ T20_

1
O G I DT+ DR+ D
1
BT e
1
+ 1)(S, + DRSS, + 1)

00050'770
R
"L+ DR, + 1)
1

— T2 - : TS, + DS, + D
T28_On S5CT + (L, + D T_8§2010 To(28, + (S, + 1)

1

+ T282

Ou T DG, + DES, + DR + D

with the analogous well-known commutator equations
involving S and T; e.g.,

[Sa H TEfS]MsHT‘Mf)]
= (SMg + a| S, ISMg) TS reranrary - (16)

The operators S, T, and E,, themselves have irre-
ducible tensor character TT#11, It is important to
determine the phases implied by the standard defining
equations (15). The full set of states of the representa-
tion [211] can be constructed by the step-down
operators Oy, and O_,, acting on the highest-weight
state with {ST} = {11}. The normalization coefficients
(13) are, in this case,

NIUIL 1) = NI, 1) = +1. 1

With these and the relations of Table III, the matrix
elements of E,, can be evaluated. The relation between
the components of S, T, and E and the standard
components of the irreducible tensor operator 7t
then follow from Eqs. (15) and (16). The results are
shown in the last column of Table 1. The over-all
phase is fixed so that the components of S and T have
phases according to the standard conventions for
spherical tensors. [Note the minus signs for the SU(4)
tensor components with (SMg)(TMy) = (11)(00) and

[211]
0-1

[211]
~10

(00)(11) in Table 1.]

2.6. Conjugate Representations

If a many-nucleon spin-isospin wavefunction trans-
forms according to the SU(4) irreducible representa-
tion [/}, the conjugate of such a function transforms
according to the conjugate representation, to be
denoted by [f*], where for

Ul=[h=fosfo=Sos fs = fil;
U*)=1h—fouhh —fo i = 1o

or, in terms of the supermultiplet quantum numbers
P, P’, PII,

(18a)

(P, P', P")* = (P, P', —P"). (18b)

The conjugate representations [f*] can be pictured in
terms of spin-isospin functions for n = 3f; — f;, —
fs — fi nucleons which have been lifted out of a
configuration whose Young tableaux are given by
(f1 — f1) columns of 4—the well-known particle-hole
relationship. Note also that the single-nucleon
creation operators a' have tensor character [1], while
the annihilation operators a have tensor character
[111). The irreducible representations of SU(2) are
self-conjugate. For spherical tensors, conjugation
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implies only Mg — —Mg, Mp—> —Mp. The con-
jugate of a state vector is thus given by
ILf1SMs, TMp)*

—_ (_l)n(_l)S—Ms+T~—MT ![f*]s . MS" T — MT)'

(19)

The phase factor has been split into two pieces: one
gives the dependence on the spin-isospin quantum
numbers standard for spherical tensor operators; the
second, denoted by 7, is independent of Mg, My,
but is a function of S, T, and [f]:5 = n([f], S, T).
The phase factors for the representations of interest in
this investigation are evaluated in Sec. 3. The de-
pendence on [f] is a matter of arbitrary phase
conventions. The choice of phase conventions adopted
in this work (Sec. 3) is such that the irreducible
tensor character of the single-nucleon creation and
annihilation operators is given by

T 11
Lamgms ~ T(ém,)(‘é'mt) 2

Qo — (=Dl L (20)

In addition, the operators S and T are to have the
conjugation properties standard for ordinary spherical
tensor operators. This implies

(— ) EIILO  ( yn2100 o 4 g (21)

2.7. Casimir Invariant

The quadratic Casimir operator is of particular
importance. It can be expressed as

6
C = z Jf, = z EabEba + 82 + T2. (223)
ab

i< j=1

This can be brought into the form

C=2E_ Eny+ E Eiy + E_jEq
+ EpsEoy + S-S, + I.T))
+ S2 448, + T3 + 2T, + E3), (22b)

from which the eigenvalue of the Casimir operator
can be read off by acting on the state of highest weight
with Sy = P, Ty = P’, Eg = P”. This gives the Casimir
invariant

C(SU,) = P(P + 4) + P'(P' + 2) + P"2. (23)

2.8. Kronecker Products

The Kronecker product of two irreducible repre-
sentations of U(4) is given by the Littlewood rules for
outer multiplication of [f}-symmetric states.??

The one-and two-particle coefficients of fractional
parentage are simply related to the matrix elements of

13 M. Hamermesh, Group Theory and its Application to Physical

Problems (Addison-Wesley Publ. Co., Reading, Mass., 1962), Sec.
7-12.
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a' (or @) and a'a' (or aa), respectively. These coeffi-
cients are therefore related to the coupling coefficients
for the products [f;] X [fo], where [f;] is the repre-
sentation for an arbitrary r-nucleon spin-isospin
symmetry, and [f,] is a one-particle (or hole), or two-
particle (or two-hole) representation; that is, [f;] =
[1] (or [1%]); or the antisymmetrically coupled two-
particle representation [12] (which is self-conjugate),
or the symmetrically coupled two-particle representa-
tion [2] (or its conjugate [2%]). All such products are
simply reducible. In addition to these, the Kronecker
products of particular interest for nuclear physics
applications are those needed for the evaluation of
matrix elements of the one-body operators (a'a) and
the two-body operators (a'a'aa). From the reduction
of the Kronecker product

] x [1*] = [0] + [211], (24)

it can be seen that the one-body operators are either
SU(4) scalars or [211] tensors. Similarly, from the
reduction of the products

[11] x [11] = [0] + [211] + [22],
2] x [2°] = [0] + [211] + [422],  (29)

it can be seen that the two-body operators transform
according to the representations [0], [211], [22], and
[422]. [Products involving symmetrically coupled
pair-creation operators with antisymmetrically coupled
pair-annihilation operators (or vice versa) have not
been included, since they would arise only in the case
of the relatively uncommon two-body operators
which are antisymmetric in both the space and spin-
isospin variables.] The Kronecker products [f;] x [f,]
with [f,] = [211], [22], or [422] are not simply
reducible. If [f;]-is the most general irreducible
representation of SU(4), these products will contain
the irreducible representation [f;] itself with multi-
plicities as high as 3, 2, or 6, respectively. For the
special representations to be considered in this investi-
gation, however, these multiplicities are never greater
than 2; and in this case the nature of the operators
themselves furnishes a canonical method of resolving
the multiplicity problem.

3. THE SPECIAL SU(4) REPRESENTATIONS;
CONSTRUCTION OF STATE VECTORS

Most of the Wigner supermultiplets of actual im-
portance in shell-model studies fall into a few special
classes for which the spin and isospin quantum num-
bers are sufficient for a complete classification of the
states of a given irreducible representation. The
reduction of the irreducible representations of SU(4)
into the representations of SU(2) x SU(2) has been
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TasLe IV. Branching formula for [yy0] — (S, T).

(s, 7)
»0)
-11
ry—22 (y—2,0
—-33 ((—-31
0—-449 (¢—-42 (y-—-40
G,y=-3 G,y=5 QGy-—-7

(y — 2i,0)
@y;ﬂ—ﬂ

a,y—2-1)

©,y—2) ©, 0)*

8 The last column has the entry (0, 0) for y = even integer; or (1, 0) and (0, 1) for y = odd integer.

TaBLE V. Branching formula for [y y — 1 0]} or [yyl1] — (S, 7).

?y”?} )
g—&i%) G-4 b

—ED) G-LD G—hD
G-5D OG-8 OG-HD
GBy—9 Gy-H Gy-9»
GBy—-9» Gy—-dH Gy-»

0—-%D
y-9 @&
&y-9 & &Y

discussed in general algebraic form by Racah.t
Racah’s technique leads to the branching law giving
the set of possible ST values in a given irreducible
representation [f], together with their multiplicities.
In particular, it can be seen that these multiplicities
are never greater than one in the following classes of
SU(4) representations:

[yy0] [yy — 10] [y00] [y10] 1]

1] Dl byy—-10Dy—1y—1],
(26)

where y = arbitrary integer (including zero, when
possible), and where conjugate pairs of representa-
tions have been arranged in the same columns. Many-
nucleon wavefunctions made up entirely of pairs
coupled to an orbital angular momentum of zero
(seniority zero functions) have spin-isospin wave-
functions which transform according to the self-
conjugate representations [yy0]. States with seniority 1
have spin-isospin wavefunctions which transform
according to the representations [y y — 1 0] or [yyl].
These representations are therefore of special interest
in the study of spin-charge independent pairing
interactions.’® The irreducible representations [y00]
imply totally symmetric spin-isospin wavefunctions,

14 G. Racah, Rev. Mod. Phys. 21, 494 (1949).
15 S. C. Pang, Nucl. Phys. A128, 497 (1969).

hence totally antisymmetric spatial wavefunctions.
Such functions are therefore of interest in nuclear
problems only for small values of the integer y.
However, they are relatively simple and are therefore
included in the present investigation.

The set of possible ST values for the irreducible
representations [yy0] is listed in Table IV. They are
arranged in columns for which y — §—T=0, 2,
4, -+, even integer only. The set of possible ST
values for [yy — 10] or [yyl] is listed in Table V,
where they are arranged in columns for which

y—8~-T=0,1,2,3,---;

that is, y — § — T can be alternately even or odd.
In the irreducible representation [y00] or its conjugate
[yyy], the possible ST values are restricted to those
with T =S, where S=14y, 4y —1, 3y —2,---,
ending in § = 0 (or }) for y = even (or odd) integer.
In the representation [y10] or its conjugate [yy y — 1],
the possible ST values are restricted to the sets with
T = SorT= S =+ 1, starting with

ST} = {0+ DI - DL - DI+ DL
B -DIy-Dh---,

and ending with {11}, {10}, {01}, or {3 4}, {1 8}, {1 &},
for y = odd or even integer, respectively. In the
representation [y11] or its conjugate [y y — 1y — 1],
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TasLe VI. Construction of state vectors. The overall normalization coefficients, denoted by N, are given by the
appropriate products of the normalization coefficients NE{,](S, T) given in Table VIL
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| [yy0)ST} = N0, 02, | [yy0){y0D; p=¥y—S+D)g=3y—-S-1)
[lyy — 1OKST}) = NO%,, 0% {lyy — 101y — L, 1)) p=(—S—T)g=T—1}
|[yOOKST}) = N0?,, |[y00lLy, 3y}); p=%t-—-S5
[I0ISTY) = X075, 0%, 021, | [YI0JA(y + 1), 3y — D)
with p=3(y+1)—S,¢g=0,r=0, for ST=S§,5—1,
p=3y+1)—-S5,¢=0,r=1, for ST=5~-1,5—1,
p=ty+1)—S,4g=1,r=0, for ST=5—1,5
|[y11{ST} = N0;_, 0%, 02, |[y11}idy, 3yp

with p=4y— S, ¢=0, r=0, for ST=SS,

p=3%—S8,9g=0,r=1, for ST=§,5-1,
p=34—8,¢9g=1,r=0, for ST=8-1,8

the possible ST values are also restricted by the
conditions T=S or T=S 4+ 1. Now the {ST}
values start with {3y 3y}, {3y 3y — 1}, {3y — 1 Iy},
-+, but end with {11}, {10}, {01}, or {34}, {3 &},
{3} for y = even or odd integer, respectively.

For the irreducible representations of the above
types, the full set of state vectors can be constructed
by a successive application of step-down operators
0,4, defined by Eqs. (11)-(13), beginning with the
operator acting on the highest-weight state: {ST} =
{PP'}. The details of the construction for the five
special classes of SU(4) representations (26) are shown
in Table VI. The basic numbers in these constructions
are the normalization coefficients NIJ(S, T). Once
these are determined, the matrix elements of the
generators E,, can be calculated with the aid of the
relations of Tables II and III. The matrix elements of
E,, in turn can be taken to form the starting point for
the calculation of the SU(4) Wigner coefficients. The
normalization coefficients needed for the construction
of the state vectors for the representations (26) are
given in Table VII. The details of the technique used
in their calculation are illustrated by two examples in
Appendix A.

State vectors [{ST7}) for the representations con-
jugate to those included in Tables VI and VII must be
constructed by exactly the same sequence of step
operators. The phase factors needed to relate a state
vector to its conjugate are thus determined by the
integers p, g, r defined in Table VI. It is convenient to
define the conjugation operator K:

\[f1SMs, TM7)* = K|[f1SMs, TMy), (27)
where KcK™! = c¢* (c = complex number). When
applied to the infinitesimal operators, the conjugation
operator has the transformation properties

KJ;K' = —~J;, KEuK'=—E

—a~b?
KSK'=—S,, KTK'=-T,.

From these properties and the relations of Tables II
and III, it follows that

KO, |[fKSTY)

=(— 1)1+n([fJ,S,T) 25HeA T
(S + ) (AT + B))!
X SE(S+¢)T2_(T+ﬂ)OaB l[f*]{ST}>
= (DM SDNGKS, T) [[/*]
X (S+a Mg=—S — «)

X(T + B, My =—T — f)),

where the conjugation phase factor n([f], S, T) is
defined by Eq. (19). From Eq. (28) it can be seen that

n(f1 S, D=5fl,S=P,T=P)+p+gq+r,
(29)

where the phase factor for the highest-weight state
{§ =P, T =P’} can be chosen quite arbitrarily. In
this investigation we have made our choice such that
the single-nucleon creation and annihilation operators
as well as the operators S and T have conjugation
properties standard for ordinary spherical tensor
operators, Egs. (20) and (21). These requirements are
satisfied by setting 5([f], P, P") =0 for all repre-
sentations except [y11]. In this case it is convenient to
set n([y11], 3y, 3y) = —(y + 1). Results giving the
full (y, S, T)-dependence of the phase factors are
collected in Table VIII.

It should be pointed out that, besides the general
y dependence, there is an additional arbitrariness in
the phase factor 7 in those irreducible representations
in which y — S — T can take on both even and odd
values. In the representation [y y — 1 0], for example,
states with y — § — T = odd integer are constructed
from neighboring states with y — § — T'= even
by means of the step operator O_,, in the prescrip-
tion of Table VI. According to Eq. (28), the single-

(28)



1580

K. T. HECHT AND S. C. PANG

TaBLE VII. The normalization factors.

reprfs[ejr(lgtion Nog(S, T) Algebraic factor
R
vyt NS, D = |:(2S —t 21_65:?; +Tig +24 54 DT} for (=157 = 41
- [(zs — Dy + llZsz—f?g +1+85— T):Iir for (cipr o
Non(S, T) = [(Zs - DQT + 1)({6}-(;; 12;)(}1 +2—-85+ T)]& for (—iymsr = 41
_ [@S=Der+ by ;;(;i = DO+IZSEDN ey
[00] N_yu(S, §) = [(ZS — D(y -Zés_.;.zf?(y +2 42874
[y10] Noii(S, S — 1) = [QS -3¢ +4(32; Ei))(y + 142973
Nou(S, § — 1) = {yz_:(ls_i_‘:fi}
Noafs, § = 1) = 5 [ RO ELF 290+ DY
[y11] Noii(S, S) = |:(S — 1)(S + DS 4—521()2(? i f)_ 28)(y + 2 + 25)7*

N_1o(S, 8) = Nop_i(S, §) = l:

2S5 -Diy+2+25(y + 2)]*

45(S + DS+ 1)

step operation O_,, implies a change in the phase
(=1)". It would, of course, have been possible to
construct the states with y — S — T = odd from the
even neighbors by means of the operator O, ;0_y;
instead. This double-step operation would have
implied no change in the phase (—1)". However, this
arbitrariness in the phase factor # is no more bother-
some than the arbitrariness of its y dependence. States
with y — S — T = even or odd fall into two distinct
families. It will be seen that the algebraic structure
of the SU(4) Wigner coefficients is different for the
two types of states and will depend on the parity of
y — § — T. Since states with y — § — T = even or
odd must be treated separately, it is not surprising that
their relative phase behavior under conjugation may be
arbitrary. In this investigation, the choice of phase
factors is that implied by the constructions of Table
VI; the resultant phase factors to be used are those
shown in Table VIII.

The irreducible tensor operators of greatest interest
in the applications to nuclear problems transform
according to the representations [1], [1%], [2], [2°],

[12], [211], [22], and [422] (Sec. 2.8). All but [422] are
special cases of one of the representations enumerated
in (26), so that their components are completely
labeled by the spin-isospin quantum numbers. The
reduction of the 84-dimensional representation [422]
into representations of SU(2) x SU(2) leads to the
following set of possible {ST} values:

223 {213 {20}
{12} {11
{02} {00}.

TasLE VIII. Conjugation phase factors.

{1 (=1n
(0] (=15 = (=17
lyy—10] (—1)-1-8
[_}’00] (— 1)}7—8
[y10] (—1)w+n-8
[y11] (—1)bv+1emins,n
[422] (—1)F+THrin,0®

8 u(1, 1) = pbg,0p,, where u = O for the state [{11}sd, u = 1
for the state |{11}a).
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TasLE IX. Normalized state vectors for [422]. The state vectors
[[422] SMg = S, TM, = T) are abbreviated by |[{ST}).

1{21}) = (1/V2)0,_, 1{22};

120} = (V3[4)(00-1)*|{22});
[{11}a) = (V204 |22});

1{00}) = (3/2V'10)(0_y )% [{22})

[{12)) = (1/Y2)0_3,|{22})
[{02}) = (V3/4)(0_10)* [{22})
[{11}5) = (1/V'3)0p_10_10 |{22})

There are two independent states with {ST} = {11}.
The most natural way of constructing the full set
of states |[{ST}) by means of step-down operators
acting on the highest-weight state |{22}) is shown in
Table IX. States |{ST}) of this self-conjugate repre-
sentation constructed by means of an even (or odd)
number of step-down operations are symmetric (or
antisymmetric), respectively, under conjugation. This
gives a natural way of distinguishing the two inde-
pendent states with {ST} = {11}. The state constructed
by means of the single-step operator O_,_, is anti-
symmetric, while the state constructed by means of
the double-step operator Oy_,0_,4 is symmetric under
conjugation. These two states, denoted by |{11}a) and
|{11}s), respectively, are automatically orthogonal to
each other. The symmetry label under conjugation
thus forms a natural choice for the needed additional
quantum number. It is interesting to note that neither
of these states is an eigenvector of the operators {2
and © of Eq. (7).

4. SU(4) WIGNER AND RACAH COEFFICIENTS
4.1. Definitions: Orthonormality
The SU(4) Wigner coefficients are the elements of
the matrix which reduces the Kronecker product of

two irreducible representations of SU(4). They are
defined by

ILF IS DIS 1ps 0, SMsTM )

—_ 3 (1)

= 2 ILf " oips, SiMs,, TiM )
010181 M5, T1 M7,
w9928 M3, T2 Mr,

X |[f Ployps, SeMs,, TMyp,)
X <[f(1)]w1¢151MS1TlMT1;
X [f®10.0oS:sM s, ToM 1, | [ logSMTM ),
(30)
That is, the full SU(4) Wigner coefficient can be
considered as the scalar product of a coupled function
with a product of uncoupled functions, the latter
specified by the 12 quantum numbers w;¢;, S;Myg,,

T;Mp, with i =1 and 2. Since a state [f] may occur
more than once in the product [fV] x [f®], the

coupled state is not fully specified by the six quantum
numbers we, SMg, TM, and the three irreducible
representation labels for [f]. An additional label p is
needed to distinguish between the various possible
states with the same [flwg, SMg, TM . (In prin-
ciple, the labels p should be given by the eigenvalues
of three additional operators. Such operators must lie
outside the group SU(4).*¢ In practice the labels p are
chosen through a set of canonical operators of
irreducible tensor character [f*®], for which only a
specific reduced matrix element has a nonzero value,
where these are defined in Sec. 4.2.

The full SU(4) Wigner coefficient can be factored
into a reduced SU4) > [SU(2) x SU(2)] coefficient
(to be denoted by a double bar) and two ordinary
SU(2) or angular momentum coupling coefficients
for the spin and isospin spaces which carry the
dependence on Mg and M:

<[f(1)]w1¢1S1MS1T1MT1§ [f(2)]w2‘7’2
X SzMsszMT2 | [f]w¢SMsTMT>p
= <[f(1)]w1¢1S1T1; [f(z)]wz%Ssz ” [f]w‘PST>p
X (SyMg S Mg, | SMgXT1M 7 T,Myp | TM p).

€2y

The reduced or double-barred coefficients can be iden-
tified with the spin-isospin factor®® of the fractional
parentage coefficients which describe the coupling of
n, nucleons of spin-isospin symmetry [f] with
n, nucleons of spin—isospin symmetry [f(®] to a state
of n nucleons of spin-isospin symmetry [f]. [From
now on the term SU(4) Wigner coefficient will
be used to refer to these reduced (or double-barred)
coefficients.] The reduced coefficients satisfy the
orthonormality relations:

for fixed S, T
Z <[f(1)]w1¢’151T1; [f(Z)]wz%Ssz " [f]‘U‘I’ST)p

0191517
w2382 Ty

X <[f(1)]w1¢1slT1§ [f(z)]wz(l’zssz ” [f’]w"P’ST>p'
= Otn1tr1000 000 0ppr;  (322)

wo'Opp'Opp’s
18 .. C. Biedenharn, A. Giovannini, and J. D. Louck, J. Math.
Phys. 8, 691 (1967).
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and again for fixed S, T:
Z <[f(1)]w1(p1S1T1; [f(2)]w2‘P2S2T2 u [f]U’Q’ST)p

[flpoe
x (Lf Mol @iSiT]; [f P w;@iSiTs || [flogST),
= 6‘”10)1'60’1%'65151'61'1Tl'awawz'alpwz'aszsz’6T3Tz' .
(32b)

In the applications to be considered in this investiga-
tion, the representations [f] are restricted to the
special classes for which the quantum numbers @ and
@ are not needed and will henceforth be omitted in the
expressions for the SU(4) Wigner coefficients. (Unless
labels w and ¢ are explicitly shown, it will be under-
stood that the representation belongs to one of the
special classes for which § and T are sufficient for a
complete classification of states.)

4.2. Matrix Elements of Tensor Operators;
Wigner-Eckart Theorem

The matrix elements of an SU(4) irreducible tensor
operator Ti}, . 1, Can be expressed in terms of a
generalized Wigner-Eckart theorem by a product of
factors involving the appropriate Wigner coefficients
and reduced matrix elements which are independent
of the quantum numbers S, T, Mg, My, (w, ¢ if

needed):
Af" 18" MET" M) T8 gy s |1 1S’ MsT My
= 3N THLFD,

P

X (Lf1S'T's [fIST | [f1'T",
X (S'MsSMg | S"MEXT'MyTMy | T'Mg). (33)

If the representation [f”] occurs only once in the
reduction of the product [f'] x [f], the labels p and
summations over p are not needed. The Wigner-
Eckart theorem then takes its usual form. If the
product [f'] x [f] is not simply reducible, the
Wigner—Eckart theorem, Eq. (33), can be used to
define the labels by a choice of canonical operators
whose reduced matrix elements have special values.
In the applications to nuclear problems (Sec. 5),
the multiplicity problem arises only in connection
with the Kronecker products [f'] x [211]and [f'] X
[422]. The labels p are needed only for [f'] = [f”],
[f]= [211] or [422] in Eq. (33). In these two cases
there is a straightforward choice for the canonical
operators used to define p. Since the infinitesimal
operators E transform according to the representation
[211], the matrix elements of these operators can be
used to define the label p for [f] x [211] — [f]. The
appropriately normalized matrix elements of the
components of E can be identified with the SU(4)

K. T. HECHT AND 8. C. PANG

Wigner coefficients labeled with p = 1. Specifically,

(UNEISD, =0 for p#1,  (34a)
(SN E Dy = [CSUIP, (34b)

and

(f1S"MST"M7| Eo |[f1S'MT ' M'y)
= (=P [CSUIAIS'T'; 211111 | [£1S"T" )y
X (S'Mgla | S"MgXT'My1b | T"Myz), (35)
where the phase factor (—1)*@? is given by the stand-
ard phase of the particular component E, , as indicated
in the last column of Table I. Coefficients with
p=2, ([f18'T’; [2111ST | [f1S"T"),_,, are then
fixed by the orthogonality (32a). [For the special
SU(4) representations enumerated in Sec. 3, the
multiplicity is never greater than two.]

The operators E,, are one-body operators, a'a, with
irreducible tensor character [211] which are complete
space scalars. This suggests that the two-body oper-
ators, a'a'aa, with irreducible tensor character [422]
which are complete space scalars, can be used to
define the labels p for the coefficients which reduce
[f] x [422] into [f]. The S=Mg=T=Mp =2
component of such an operator, for example, would
have the specific form

g G054 40u b} - (36)
The appropriately normalized coefficients which give
the ST dependence of the matrix elements of such
operators are to be identified with the coefficients
([f1S'T’; [422)ST | [f1S"T"),_,; that is, those with
p = 1. Coefficients with p =2 can again be con-
structed by means of the orthogonality requirement.

4.3." Phase Convention

The over-all phase of the SU(4) Wigner coefficients
is arbitrary. It is fixed by a generalized Condon-
Shortley phase convention. The SU(4) Wigner
coefficients can be chosen to be real, and the so-called
leading coefficient connecting the highest-weight state
S,T, = PP, of the representation [fV] with the
highest-weight state S,T, = P,P, of the representation
[f®]is chosen to be positive. For most of the simple
products [f®] x [f*]— [f®] this choice of ST,
S3T3 uniquely determines S,7,. If it does not, the
leading coefficient is specified by a further choice of
S, T, (the specific S,T;, values to be singled out will be
denoted by a bar: S,T,), such that

<[f(1)]P1P1'; [f(2)]S2T2 " [f(a)]P3P;;> >0. (37

In the case of the coeflicients in the reduction [f] %
[211] — [f], it is convenient to set S,T, = 10, or
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equally well Ol (rather than 11), so that the matrix
elements of S, and T, have their conventional positive
values. In all other cases, S,T, will be chosen as the
largest possible values of S,T, consistent with the
restriction S, T, = P.P;, S,T, = P,P,.

4.4. Symmetry Properties of the Wigner Coefficients

The symmetry properties of the SU(4) Wigner
coefficients may, in the most general case, be com-
plicated by the state-labeling problem and the multi-
plicity problem. For those Wigner coefficients for
which neither the quantum numbers @ and ¢ nor the
labels p are needed, the symmetry properties can be
derived by standard techniques.’” They follow from
the conjugation properties of the state vectors, Eq.
(19). Combined with the well-known symmetry
properties for the ordinary spin-isospin angular
momentum coupling coefficients, the symmetry prop-
erties for the reduced SU(4) Wigner coefficients
follow from those of the full SU(4) Wigner coefficients.

When neither w, @, nor p are needed, they are

O SIS Ts [fI8T, | [f185T)
=(—DT <[f(1)]S1T1§ [fm]ssz ” [f(a)]saT:;),
(38)

where the conjugation phase factors % are enumerated
in Table VIII.

D (8, T [f1S.Te | [f 1S, T
=(— 1)a+n‘2’+S1+Sz—sa+1'1+1'3-:r,,

« [dim [£ 9128, + DT, + I)T
dim [f™](2S; + DQ2T; + 1)

X ([f 185Ty; Lf *1S: T, | [fVISiT),  (39)
where the over-all phase in this relation is fixed by the
convention (37), giving
U=P1_P3+P{—P:;+"7([f(2)]ssz)+S2+T2,

(40)
and dim [f™] stands for the dimension of the irreduc-
ible representation [f{f{f{P]:

dim [Afefil =i =+ DL —fi +2)

X(=fi+ Dh+3IL+D(f+ 1. @)
A special case of relation (II) gives
(LfIST; [f*IST | [0]00)
_ (s (S + DET + 17t
b [ dim [f] } @

where ¢ = 0 for all the representations enumerated in

17 J. J. de Swart, Rev. Mod. Phys. 35, 916 (1963).
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(26) (except [y11] and its conjugate, for which
o =y + 1). Finally, the symmetry property involving
the simple interchange of representations (1) and (2)
is given by

(D) (LF1S,T3 [F¥IS,T | [ ©1SsTy
= ( _— I)V+SI+S2—Sa+T1+Ta—T3

x <[f(2)]SZT2; [fu)]SITl " [f(a)]ssT3>, (43)

where the phase factor (—1)", through the convention
(37), can be identified with the sign of the coefficient:

(Lf 18T [f®1PP; || [fO1PsPs).
The symmetry property (III) is not of very great
interest, but the relations (I) and (II), as well as their
combination, may be very useful in the applications to
problems in nuclear physics and lead to a reduction in
the number of coefficients which must be calculated
(or tabulated).

If S'and T are not sufficient to specify the states of a
representation, the additional quantum numbers can
always be chosen such that the symmetry relations
(I)—(IIT) are satisfied. This requires that the state vec-
tors have simple conjugation properties. For this
purpose it may be convenient to choose quantum
numbers other than w, ¢ (as indicated in the case of
the representation [422]). In the case of products
which are not simply reducible, the symmetry rela-
tions may be dependent on the labels p. Only the
coupling coefficients for the products [f] x [211] —
[f1 and [f] x [422] — [f] are of special interest in
the applications to nuclear problems. With our choice
of p, the symmetry relation (I) becomes
M (S V¥ISTs [fO4S,T | [f*1S:Ty),

m, (2) (3
=(_1)ﬂ+1+rl +n " —n

X <[f(1)]S1T1; [fm]Ssz ” [f(a)]S3T3>p’ (38"
when [f®]is one of the self-conjugate representations
[211] or [422]. The symmetry relations (II) and (I1I)
are independent of p when [f®] is either of these two
representations.

4.5. SU4) Racah Coefficients

The SU(4) Racah coefficients are straightforward
generalizations of the ordinary Racah coefficients
and can be defined by a recoupling transformation for
a coupled system built from the states of three
irreducible representations [f?] with i = 1, 2, 3, and
coupled to a resultant state of the representation [f].
Two ways of coupling such a system are illustrated in
Fig. 2 by the type of diagrams introduced by French.!8

18 M. H. Macfarlane and J. B. French, Rev. Mod. Phys. 32, 567
(1960).
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The recoupling process involves a unitary transformation whose matrix elements are the SU(4) Racah or U
coefficients:

W D o} L DS Vpre s 0pSMsT M)
= 3 KA OD o f s 205 0pSMsTMo)

(™ 1osser.s Iy (2 @7. [ £12) (23)
x U([fILf WAL L 1pepass [f ]stPLza)' (44)
The U coefficients satisfy the orthogonality relations

UG- 5amUC - 5op) = 8y,
SUC- 50@UC 3 a't) = by (45)
P

where « is a short-hand notation for [f1?], pys, p1s.3, and where u is a short-hand notation for [f®9], py,,
pr23- The U coefficients can be related to the SU(4) Wigner coefficients by the sum

U({f m][f (Z)Hf ][f (3’]5 [f (12)],‘3‘12}’12,3; [f (23)1923;01,23)
= 3 A Ve I Plee | I ™ lerodpnalLf Pleses [fVles | [f1€)p1s.s

€1€g€y
€12€23

x(f Pley; lf e, ” lf (23)1623>p23<[f ey Lf ®eyg “ [f16)4,,0,U(5182583; S12Sa) UL, TT; Th5Ts),  (46)

where ¢; is a short-hand notation for §;7; (and w,p;, if needed). The sums over Mg, and M; have been
performed and expressed in terms of the angular momentum U coefficients (unitary or Jahn form of the §
and T space Racah coefficients). The SU(4) U coefficients are independent of ST, (w¢), so that any con-
venient subgroup labeling can, in principle, be used in performing the sums over the subgroup quantum
numbers. In principle, therefore, very general expressions can be given for the Racah’ coefficients. However,
these would be unnecessarily complicated by the multiplicity labels p. In the actual applications, labels pyz, pss,
and py, 4 are never needed; in those cases where they are needed, the label p, 5, corresponds to a multi-
plicity of two only. The most useful equation relating the SU(4) Racah and Wigner coefficients is given by

3 AL ews [ ens [| L 1000,0 UL VIS PSS L 1 P Tp12p12,55 L * Ipespres)

P1i,23
= 3 [ es; [ Teo | I " leredpuollf “leres [f @les || LF1€)psa. oL Plens Lf @les | 1 % lens) pag
X U(8,855Ss; S18e)U(TT,TTy; TyoTo).  (47)

Except for the summation over p; »3 (when needed), buildup process whereby relatively complicated SU(4)
this is again a straightforward generalization of a Wigner coefficients are calculated from a knowledge of
relation valid for ordinary angular momentum co- very simple ones.

efficients. This equation is to be used as the basis for a Equation (47), together with Egs. (42), (39), and
(32a), also leads to the special value

UL PSS 10 [oD ,
= (— )T LE P Dty dim [f*¥]
=D [dim [f1dim [f‘”]] ’
[ﬁzq (48)

where o([f], [f®], [f"®]) is given by Eq. (40), and
[f®] o, = Ounless [f®] = [y11] or its conjugate, in which
case 0, =y + 1, Eq. (42).

RPN 4.6. Method of Calculation
' The calculation of the SU(4) Wigner coefficients
begins with the calculation of the matrix elements of
Fic. 2. Two ways of coupling states of 3 IR’s to a resultant state. the infinitesimal operators E,,. These follow from
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the normalization coefficients of Table VII and the
relations of Tables II and III (for the details, see
Appendix A and Ref. 19). The matrix elements of
E,, are expressed in terms of reduced SU(4) Wigner
coefficients by means of Eq. (35). They can be read off
from the tabulations of ([f18'T"; [211]11 || [f1S"T"),_,
given in Appendix B.

The simplest Wigner coefficients are those involving
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a coupling of [f] with the one-particle representation
[1] (one-particle cfp’s). These can be calculated by
standard recursion techniques from a knowledge of the
matrix elements of the infinitesimal operators. By
operating with an operator E,, = E,(1) + E,(2) on
the state of a coupled system built from systems 1 and
2, a recursion relation for the full SU(4) Wigner
coefficients is obtained. For example,

> (f 1S Ms, TiM 7,5 [13Ms M1, | [f1S'(Mg + DT'(My + 1))
X ([f18'Ms + DT' Mz + D] Ey [[fISMsTMy)
> (fM15iMs, — DTi(My, — 1); 1M 3Mp, | [fISMsTM 1)

s

STy

X ([f V18, Mg, TiM 7 | Eq |[f18:(Mg, — DT(Mp, — 1))
+ (S V1S, Mg, TiM 75 (1R (Mg, — DEMp, — 1) | [f1SMs TM )

X ((13Mg3My,| Ey 1M, — D¥(Mp, — 1)).

From such recursion relations, coefficients of the above
simple type have been calculated for the cases when
both [f®M]and [f] belong to the special representations
of Sec. 3. Coefficients for the coupling of [fM] with
more complicated representations are then calculated
by a buildup process based on the recoupling relation,
Eq. (47). By setting both [f®] and [f®] equal to the
one-particle representation [1] in Eq. (47), SU4)
Wigner coefficients with [f2¥] = [2] or [12] (two-
particle cfp’s) can be calculated. In this case the
products [f®M] x [f*¥] are simply reducible. The p
sum in Eq. (47) is not needed, and the SU(4) U
coefficient serves merely as a normalization factor for
the Wigner coefficients. Coefficients with [f(23] =
[211], [22], and [422] can be calculated through Eq.
(47) by setting [f®] and [f®] equal to [13] and [1],
[12] and [1%], and [23] and [2], respectively. In many
of these cases the multiplicity in the product [f] x
[f®] requires the p sum for the left-hand side of (47),
and the simultaneous calculation of both the Wigner
and U coefficients requires the solution of a simple
2 x 2 linear system.

Algebraic expressions for both the Wigner and
Racah coefficients are tabulated in Appendix B. This
appendix is preceded by a table listing the cases

(49)

covered and showing the arrangement of the tables of
SU(4) coefficients. Wigner coefficients involving the
coupling with [22] and [422] include only the coeffi-
cients needed for diagonal matrix elements of the
corresponding two-body operators. The tables of
Racah coefficients are also restricted to those needed
for the calculation of diagonal matrix elements—that
is, those with [f®] = [f], and [f®] and [f®] equal
to [1%] and [1], or [1?] and [12], and [23] and [2],
needed for the evaluation of the matrix elements of
one-body, or two-body operators.

5. APPLICATIONS

The recognition that the spin-isospin part of the
fractional parentage coefficients can be identified with
the reduced SU(4) Wigner coefficients makes it pos-
sible to perform the spin-isospin sums in the cfp
expansions of nuclear matrix elements by means of
the Racah formalism of Sec. 4.

The cfp’s needed for the decomposition of a totally
antisymmetric n-nucleon wavefunction into totally
antisymmetric functions for specific sets of #; and n,
nucleons can be factored into a space and a spin-
isospin part?8:

([f(nl)]ananl’ ﬂ‘nlsannl; f(nz)]ansan » ﬂ’nzsnaTﬂg I} [f(")]anL", ﬂnSﬂT“>

_ l:-N’[f('u)].N’[f(ﬂzl]
Nppmy

3
} ™o Linss 7™ YnyLong [} L)

X ALf 180S0, T3 [f " 1B1Sa Ty | [f 18,854 To),  (50)

1% S. C. Pang, “‘On Eight-Dimensional Quasispin,” Ph.D. thesis, Univ. of Michigan, 1967.
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where the spin-isospin factor has been written in
the SU(4) notation of Sec. 4, and where N’le is the
dimension of the irreducible representation of the
Symmetric ot permutation group on n; objects described
by the Young tableau [f]. The representation
contragredient to [f] under the symmetric group is
denoted by [f1; that is, [f] is obtained from [f] by
interchanging rows and columns in the Young
tableau. (It should perhaps be pointed out that the
symbol [f]is usually used to denote the symmetry of
the space part of the wavefunction, while [ f1is used for
the spin-isospin part. In this investigation the role
of the two has been interchanged for economy in

+
z <°" l’ lm’mtl o Ialmlmsmt> aa’l’m;'m,'m,'aalm;m.m,
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writing. The tilde still implies interchange of rows and
columns of the Young tableau.) The full set of space
quantum numbers other than L is abbreviated by the
label «; quantum numbers such as w, ¢ are replaced by
B. [If needed, it will be understood that these quantum
numbers will be chosen such that the SU(4) Wigner
coefficients satisfy the symmetry relations (I)-(III).]
Matrix elements of one- and two-body operators
can be expressed in terms of these cfp’s by the
usual expansions.

5.1. One-Body Operators
It will be assumed that the one-body operator

(51)

has a definite SU(4) irreducible tensor character [fop] With components (84:sGAM), and spherical tensor
character £ with component A¢. The matrix element of the one-particle operator can then be factored:

(o Vmimmi] o Jalmmgmy) = (V]| o llad) ((113}; [£o)88 || [113D)
X (3m,SMog | 3m)EFmBMog | Im)ImEMg | I'm}). (52)
The matrix element of the one-body operator between z-nucleon states can be expressed by the cfp expansion

(f' LMY, B'S'MET’

'TIO “:f]aLML,ﬂSMsTMT> =n

N

> —L 1 F(space)F(SU,),
"™ [N Ny, ]]% )

(53)

where F(space) and F(SU,) are the space and spin-isospin parts of the cfp expansion which are given by

2 Pl Ly [ead 1} LY ety Ly (el |} [ 3L

]( DS La-rV=LyLILY; L SXLMEMe | L'ME)  (54)

F(space) =
%q1Lln_y
ayey’ il
) QL + D@2 + 1)
H o eyl
x Gl o e >[(2Ln-l F DR+ 1)
and
FSU)= 3  Af"VBusSn1Toey; [113 | [f16ST)

Bn-18n-1Tn—

X A" BaaSuaToss IR || (18 TXURE [£018T | 14D

. [ (28 + 1)2
(28, + D@28+ 1)

« [ Q2T + 1)2
QT+ DQG+1)

3
] (=BT TY(TYTY; T, (BT My Bullog | T/

3
} (—1)3*5-b-8U (5450, 5, S)(SMSlbs | 5'M3)

(55)

With the aid of the symmetry relations (I)-(III) for the SU(4) Wigner coefficients, the latter can be written

(=1)op

(n=1) dim [1] dim [f] 3
F(SU,) = (=17 v 1D
(S ) ‘( 1) [ dim [f(n—l)] -J }
x 2

ﬂn—lsn-lTn-—l

[dim [f,]]
AfIBST; P13 | Lf " VB Sna Tt V1B rsSnca Tocas WBE | [f115'S'T)

x ([1°3%; [1134 || [fop1SBYU(SES'E; S, 8)U(TET'E; T, ),

5 (SMsSMog | S MK TM B Mo | T' M)

(56)

where o, = §;, Sl that is, (— 1)’ = —1 for [f,,] = [211], (—=1)% = +1 for [f,,] = [0].

The coeﬁicrents in the spin-isospin sum of the last factor are now in a form in which they can be summed
by means of Eq. (47). Although the first factor (enclosed by curly brackets) is made up solely of trivial
dimensional and phase factors, it is convenient to write it in terms of the SU(4) Racah coefficient with
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[f] = [0], Eq. (48). This makes it possible to express the resultant of the spin-isospin sum in the
cfp expansion in terms of ratios of SU(4) U coefficients which are independent of the particular phase con-
ventions [such as (37)] chosen for the SU(4) coefficients. The resultant expression is
_ (D I UL [ enle)
[dim [f,,F % UFICILAILL; 205 (0D
X (Lf1BST; [£,518B | [f 1S T'),(SM8.Ms | S'MEXTM yGulls | T'Mp). (5T)

F(SUy)

The SU(4) Wigner and Racah coefficients needed for the evaluation of this expression are given in Tables A.4
and A.7 of Appendix B. If the one-body operator is a complete space scalar (if the reduced matrix elements
of » are independent of « and /), the sum over the spatial quantum numbers is trivial, and the full matrix

element has the simple form

(f' 1’ LMy, 'S’ MgT' M7| OER SRy [[fleL M, BSMsTM )

= S¢pqir10ar Oz 111 2P [1])

The only nontrivial case involves operators of SU(4)
tensor character [211]. In this case the sums over the
possible (n — 1)-particle symmetries have the very
simple value

Ny UL L0 '[211];0)
N UAFNLILANLD; LF; [0D)
=0 for ps#1,
= —2[C(SU)E for p=1, (59)

where the Casimir invariant C(SU,) is given by Eq.
(23). The S, T-dependence of the matrix element of
a space-scalar one-body operator of SU(4) tensor
character [211] is thus given by the single SU(4)
Wigner coefficient with p = 1, that is, by the matrix
element of the corresponding infinitesimal operator.
The only nontrivial operators of this type are the
infinitesimal generators E, Eq. (3), which give
the Gamow-Teller matrix elements in beta decay.
The tables of Appendix B can thus be used to read
off Gamow-Teller matrix elements for a wide class
of Wigner supermultiplets.

[f(n—l)]

5.2, Particle-Hole Interaction; Space-Scalar
Approximation

It has been shown that a space-scalar approximation
to the particle-hole interaction may give a good
estimate of the full particle-hole interaction energy in
nuclei near the beginning of the 2s, 1d shell.2’ The
matrix elements of such an interaction can be written
down at once in terms of the results of Eqs. (58) and
(59) for particle-hole configurations described by the
weak-coupling model. In the space-scalar approxima-
tion the particle-hole interaction can be represented

(_ 1)5[1‘01)][211]

Gim [ v vy, %
X (LFIBST; [fonJSTB | LF1B'S'T),(SMsSMls | S M T Myl | T'Myg).

Ny o DUAPISINL [F; [foplp)

U0 LF ™00 [0D)

'3

(58)

by
Von = E (—aos + a7 - 7

i
+ ay%;+ 0, + ay(0; - 6,)(v; - 7,)), (60)
where agy are constants, and where the summation
indices i and j refer to nucleons in different major
shells such as the 1p and 2s, 1d shell. Zamick?® has
pointed out that the first two terms of Eq. (60) may be
used to give arough idea of the location of the particle-
hole states. The matrix elements of the first three
terms of Eq. (60) can be calculated by ordinary
angular-momentum calculus. The last term is more
complicated. Moreover, it may lead to important
contributions to the particle-hole interaction energy
in many cases.’® It may give rise not only to important
J-dependent contributions to the diagonal matrix
element of the interaction, but may also give an
estimate of the often significant mixing of particle-hole
states with the same space structure but with different
spin—isospin quantum numbers for the particle and
hole configurations. The last three terms of Eq. (60)
are built from space-scalar one-body operators for
each shell. Each has SU(4) tensor character [211]
with 8G components of 01, 10, and 11, respectively.
The full tensor character of each is of the form

asg(O8E) - - oY), (61)

where the double dot refers to the scalar product in
8 and G space. It is assumed that the particle-hole
state can be described in the weak-coupling model in
which the Wigner supermultiplet quantum numbers
for both the particle and hole configurations are good

0 .. Zamick, Phys. Letters 19, 580 (1965).
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quantum numbers, to be denoted by [f,] and [f],
respectively. If the number of particles and holes
are denoted by n, and n,, we shall take [f,] and [f]
to be Young tableaux describing the symmetry of the
spin-isospin functions for », and (N — n,) nucleons,
respectively, where N = number of nucleons in the
closed shell. The basic form of the wavefunction is
chosen to be

|(UfalenLaSulaTns [fplayLySpl, T)IM s TM ), (62)

K. T. HECHT AND S. C. PANG

where the subscripts p and & refer to the particle and
hole configurations. In the weak-coupling description
there is no further coupling of the supermultiplets
[fo], [fa]; but the angular momenta and isospins
of the particle and hole configurations are coupled
to total angular momentum J and total isospin T.
Matrix elements of the operators (61) follow from
Egs. (58) and (59) {with ([1]] o121 |[1]) = (15)},
leading to

(U JsLaSidnTrs LfoJouLySad s TIM ;TM p| ase0%% " - 088" [(LfilowLaSatnThs [l LSyt T)IM ;TM 1)

=a
5% Jy i 8 T,

(_1)J+J;.+J,,’{Jh Jaz J}(_I)T+T;.+T,'{Th T@ T}
T, ©

X [ + D, + DI, + DI, + DR pHesmesh b Sl ptesmst &

D
J S, S J, S, s}

x [(25; + DT, + DIF2ACSU)INILIS,T,; 211188 | [£1S,T5)pm

x [(2S; + DT, + DIRACSUYIHAIS T 211188 || LAISaTher

where it is convenient to express the ordinary angular-
momentum Racah coefficients in their 6-j symbol
form. The SU(4) Wigner coeflicients for the operators
with 8G = 10, 01 are given by the simple matrix
elements of S and T, and have the values

[C(SUDTHLFIST; 211110 || [£15'T")ps

= 835077 [S(S + DI,
[C(SUDIKISIST; [211101 || [f1S'T")pmr

= 85587 [T(T + DI, (64)

In these two cases, therefore, Eq. (63) reduces to a
simple result of ordinary angular-momentum calculus.
The diagonal-matrix elements of the full interaction
(60) have been given in Ref. 10. The operator with
8B = 11 can give important contributions to both the
diagonal and off-diagonal matrix elements. From the
symmetry relation (38'), however, it can be seen that
matrix elements with §' = S, T’ = T are zero for all
self-conjugate representations such as [y)y0] or [211].
For configurations with an even number of particles
(or holes) the most important symmetries for the spin-
isospin functions are likely to be those belonging to
SU(4) representations such as [0], [11}, [22],-- -, or
[211], for which the diagonal-matrix element (63) is
zero. The last term of (60) is therefore important

(63)

mainly for configurations with an odd number of both
particles and holes. It can, however, lead to matrix
elements off-diagonal in both S,T, and S,T;, for all
SU(4) representations, and the last term of (60) may
be a major contributor to the mixing of different
particle-hole states with the same space structure.
The SU(4) Wigner coefficients needed for the evalua-
tion of (63) are given in Tables 4.1-4.6 of Appendix B.

5.3. Two-Body Operators

The techniques used in Sec. 5.1 can also be used to
simplify the expressions for the matrix elements of a
two-body operator, such as the two-body interaction

H=3Xh,;. (65)

i<j

Such operators can be decomposed into their
SU(4) irreducible-tensor parts with components
(8M5)(GAMg) and spherical-tensor character £ (for
orbital space) with components M¢. To be invariant
under rotations in ordinary three-dimensional space
such operators must be of the form

[fopl

Mo [fop1if=8
HsBMg = % (—1) “HSHg)BMgihp=—Mg -
5

(66)

The reduced matrix elements of the two-particle
operators are defined by the relation

? ’ ! 14 ’ ’ ’ [+ ;E
{f (2)]“2L2M 1,5:Mg,ToM7 | h?éj(]) S)BME) ;Mo

= ([f PlogLgll B [ PaoLo) ([ 1S, Ty; [£op1ST || [f P1S5T5)
X (S3Ms,8Mos | S;Mig XT,M 1, BMog | Ty My XLoMLEMos | LiMT,). (67)

(For simplicity, operators antisymmetric in both the space and spin—isospin variables will be excluded so
that the two-particle matrix elements to be considered will be restricted to those with [f®'] = [f®].) The
spin—isospin sums in the cfp expansion for the matrix elements of such operators can be carried out by

[f*laeLeM £, S:M s, TuM 1)
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techniques similar to those of Sec. 5.1. The matrix element between r-nucleon states can then be given by

the expression

(Lf 1 BLS' IM ;T M| HS B || 10BLSIM ;TM )

U PlosLy |l B |[f P Ly)

Np n-2)
[r 1
— bnn — 1) e D
PP ['-N)[f](N’[f']] an—gln_g
ang
as’ Lo’

[dim [f,p11}

X ([f" ety oLpgs [f®oaLa I} [F1eLXf ™ Tty s Las [F s Ls I} [f]e'L)

X (__1)Ln_z+L2+L+S+L’+S’+J[(2L + 1)(2L§ + 1)(251 + 1)(2L’ + 1)15{

xS UL ML 2 L0 [foplp)
V(R Tl Vi VA H P H V)

L L, Ln_zilL S J}
Ly L 8]\ L 8§

([fIBST; [f0p)ST || [f'18'S'T)(TMyB Mg | T'MT). (68)

If the two-body operator is a complete space scalar (that is, if the reduced matrix elements are independent
of «; and L, and if £ = § = 0), the matrix element again has a very simple form which can be evaluated
completely with the aid of the tabulations of SU(4) Wigner and Racah coefficients of Appendix B:

(Uf'Io'B LS TM ;T Myl Hf){%’}ié’g“‘m‘”;[ fleBLSIM ;TM 1)

Nggeoy (L P11 AYN D)

= in(n — )0 11719408501
P Ny

S UALAILS P PL L2 Lfonlp)
o USSP ™25 [o])

If the operator is also an isoscalar (charge-independ-
ent)—that is, if § =0 and G = 0—then the SU(4)
tensor character is restricted to [f,,] = [0], [22], or
[422]. For the special SU(4) representations of Sec. 3
the multiplicity label p is needed only for the case
[fop] = [422]. In this case the quantum number was
chosen such that the (S, T)-dependence of the matrix
element is given solely by the SU(4) Wigner coefficients
with p = 1; that is,

Ny UL 2L L) [4220) _

ULA12°10 10205 [F 215 [0))
for p#1. (70)

In the case of complete space-scalar, charge-inde-
pendent operators, however, the matrix elements (69)
have a very simple form which can be derived by much
more elementary techniques. A complete space-
scalar, charge-independent two-body operator can be
expressed in terms of the operators
SHL £ P*?), 3(oi-0), (v, (7))
i<j i<ig i<ij
where P&P?) s the Majorana or space exchange
operator. These have the corresponding well-known
eigenvalues

218+ 1) —n), 2[TT+ 1) — §n], (72)

where n, (n_) are the number of spacially symmetri-

-y Ny

n.,

[dim [f,,]1t

([f1BST; [fop)08 || [f1B'ST ) {TM zB M5 | T'M7). (69)

cally (or antisymmetrically) coupled pairs of nucleons
in the n-nucleon state, where?!

n, =4in(n — 1) F }Hin® — 4n 4+ C(SUY). (73)

The SU(4) irreducible tensor form of these operators
is given by

T = ¥ [(6;- 6;) + (7 ;). + (0, - 6,)(%; - T))];

i<i o z-l’
T = 2[("1 %) — (0,05, NG
Tla22] =.§.[§(c,- c6,)(t; %) — (0,0 6,) — (7, 7))

If the two-body operator includes the Coulomb
interaction so that it can have isovector (G = 1)
and isotensor (G =2) components, the matrix
elements (68) and (69) are much more complicated,
and their evaluation in general form involves the full
SU(4) machinery. The isovector part has SU(4)
tensor character [211], and both SU(4) Wigner and
Racah coefficients with p =1 and p # 1 make a
contribution to the matrix elements of the n-nucleon
system. The isotensor part will receive contributions
from' operators with SU(4) tensor character [22] and
[422].

1 J, M. Blatt and V. F. Weisskopf, Theoretical Nuclear Physics
(John Wiley & Souns, Inc., New York, 1960), p. 239.
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5.4. Coulomb Interaction

The Coulomb energy in nuclei seems to show only
a relatively mild dependence on the spatial quantum
numbers, and it may be a good approximation to
replace the full Coulomb interaction energy by the
diagonal matrix elements of the complete space-
scalar part of the interaction,® particularly if the
motivation focuses on a study of the dependence of
the Coulomb interaction on nucleon number and the
spin-isospin, and Wigner supermultiplet quantum
numbers.®

The diagonal matrix element of the full Coulomb
interaction

Vc—z _“[%(%'l"t ti)

i<jir

., + 1)

+ %(3tz;tz,~ -
leads to the Coulomb energy formula

= EY — MzE® + [3M% — T(T + DIER.
(76)
The Coulomb interaction can be decomposed into
irreducible tensor operators of the type HY' "-(‘-’sb(,,s
HY'&), defined in Eq. (66). The full decomposition is
given in Ref. 9. The complete space-scalar part of the
Coulomb interaction can be expressed as

t;-t)] (75)

Vﬁ(}mce-sca.lar = {\_/_, (H(’,[&], :[22])
— __1_._ H6[211] —_— H'[§2]}
\/2 ;10 \/6 0;20
+ ﬂ{T (BHiH + ™)

+VTHG + B, ()

A2
where the coefficients « and § must be calculated for
each major oscillator shell. [Results for the 1p and
2s, 1d shells are given in Ref. 9. Equation (6b) of
Ref. 9 should read « = 127/96, g = 7/6.] The two-
body operators H’ (characterized by a single prime) are
built from pair operators a'a', (aa), with SU(4)
tensor character [11], while the two-body operators
H" (characterized by a double prime) are built from
pair operators a'a', (aa), with SU(4) tensor character
{21, ([28]). These operators have two-particle reduced
matrix elements

i 3
Q1] K 11 = [dﬂ‘%l—]]] ,

(@211l W 2 = [d‘m /o] ] .

78
dim [2] (78)

K. T. HECHT AND S. C. PANG

In the approximation in which the full Coulomb
energy is replaced by its complete space-scalar part,
the coefficients E’, EY’, and E® of Eq. (76) can now
be evaluated with the aid of Egs. (69), (77), and (78).
The isoscalar coefficient E{’ can also be evaluated by
more elementary techniques, Eqgs. (71)-(74). It has
the value

0) _ ga_-%i)%n(n — 1)
(« 4+ 38) _
+ Ty [T(T + 1) — ¢n]

(—“2—‘4@ [C(SUL) + 25(5 + 1)

—T(T+1)—3n]+ 3na,. (79)

The isovector and isotensor coefficients can be calcu-
lated with the aid of the expressions for the SU(4)
Wigner and Racah coefficients needed for the evalua-
tion of (69). These are given in Appendix B, which
includes tabulations of the diagonal coefficients

([fIST; [fo, 108 | [£1ST),

with [f,p] = [211], [22], and [422], and the needed
Racah coefficients, including the sums

Z,=in(n—-1) 2 M
s N[f]

o VWSS T L) onlp)
UL AL 2T L0 [0D)

Results for the isovector and isotensor Coulomb
energy coefficients EJ’ and E#’ are collected in Table
X. Some of these results have been given previously®
in a somewhat different form. It is convenient to
express the Coulomb energy coefficients in terms of
the parameters

b=+ 38), c=75—p), 3y

and a parameter g, which gives the contribution from
the interaction of the n nucleons in the partially filled
major oscillator shell with those of the core.® The
coefficients ¢ are of the order of 5 to 10 kev for the
1p and 2s, 1d shells, while b is of the order of 50-
100 kev.22 Since the dependence on the spin-isospin
and Wigner supermultiplet quantum numbers is given
entirely by the ¢ terms, it can be seen that the Coulomb
energy shows only a mild dependence on the quantum
numbers y, S, 7. If the integers y are related to
nucleon number n, it can be seen that the nature of

(80)

22 J. Jdnecke, in Isospin in Nuclear Physics, D. H. Wilkinson,
Ed. (North-Holland Publishing Co., to be published).
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TaBLE X. Isovector and isotensor Coulomb energy coefficients.s

SU(4) Rep.

7 ®PP) Eg EQ
- _ [2y + 5)2y + 3) — 45(S + 1)]
[y»0] (»00) 3a, + 3b(n — 1) + 18¢ b—c+ec GT—TGT T
yy—10] (,v—ﬂHi)} 3ua, + 3b(n — 1) + 18¢
g G+ +1D— S5+ 1)]
2y + 3) + (~1)*5T(2S + DERT + 1 -
[»00] Grivdy } 3a, + 3b(n — 1) + 18¢ b s
(022 &yt —6ez(y + 2) <
11 &b -0D 3a, + 3b(n — 1) + 18¢ for for
Oo+2 _ —s= 0+2 _
T@+n 7 s=r T+ §=r
ot2_ [y + 2) — 2T}
6cz{ L0 — 2) YeS=T—1 b— _Wra=el =T—
by—1y—1] Gyty—~dy -1 +ben\ T U+2 b—2¢+2 QT — 1T §=T-1
~0+2) s _lo+n+20+ 01| _
TE1 O+2 S=T+1 SeTIDTED S=T+1

& z = (P"}|P"]). n = number of nucleons in a major oscillator shell.

the (n, T)-dependent terms for the Wigner super-
multiplet scheme are very similar to those predicted
for the low v limit of the seniority scheme.? The results
of Table X thus seem to indicate that the major
(n, T)-dependent effects in the systematics of Coulomb
displacement energies are quite insensitive to the exact
nature of the wavefunctions of the n-nucleon system.

6. CONCLUDING REMARKS

In principle, it is possible to extend the techniques
used in this investigation for SU(4) to the unitary
groups needed to classify the space parts of the wave-
functions, such as SU(3) and SU(6) for the lp and
2s, 1d shells, for example. In principle, therefore, the
full cfp expansions can be summed in general, and the
matrix elements of one- and two-body operators can
be expressed entirely in terms of Wigner and Racah
coefficients for the special unitary groups. In the most
general case, however, the algebraic nature of such
coefficients is again very complicated,?® and the
expressions for the matrix elements are severely
complicated by the multiplicity problem and the
sums over the multiplicity labels. It may, however,
again be possible to single out certain simple repre-
sentations of special interest for which the summations
over both the spin—-isospin and space quantum num-
bers can be carried out in the cfp expansions for the
matrix elements. The resultant interplay between the
Wigner supermultiplet and the spacial quantum
numbers may lead to interesting studies.
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APPENDIX A. CALCULATION OF
NORMALIZATION COEFFICIENTS
To illustrate the technique used in the calculation of
the normalization coefficients associated with the step
operators O,z, Eqs. (11) and Table VII, the details
of the calculation will be sketched for two of the
representations of Sec. 3, viz., [yy0] and [y y — 10].
In order to evaluate the normalization constants for
the step operators O, it is necessary to evaluate
matrix elements of the type

(UKSTH E_p 4E,4 |[fHST}) = (E_apEap). (A1)
The curly bracket is again used to denote states with
M, =S, My =T. There arec altogether five inde-
pendent types of such matrix elements, those with
af =11, 1 — 1, 10, 01, and 00, respectively. One
relation among the five can be obtained from the

expression for the quadratic Casimir operator, Eq.
(22b), which gives

2[(E.y1En) + (E_uEy 1) + (EsoEr) + (EonEqn)]
+ (EgEq) = C(SU,) — 2 — T? — 45 — 2T. (A2)

The further evaluation of the matrix elements proceeds
differently for the different irreducible representations.

The Representation [y)0]

In this representation the possible ST values
(Table IV) are such that y — § — T = even integer.
Neighbor states thus have the property |AS| + |AT| =
2, so that

O IDYONST}) =0 if o + |8l =1. (A3)

23 J. D. Vergados, Nucl. Phys. A111, 681 (1968).
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This implies
(YOKST}H 0400 | [yYOUST}) = 0
for || +|fl=1. (A4)
With the relations of Tables II and III and the com-
mutation properties of the infinitesimal operators, the

four equations (A4) lead to four relations among the
matrix elements (Al):

(LMM=@+JQE%3,
(EoaEo)) = (EasEm) (S_-ll-_l—) ,
(o) + Boiod gy — BB s
—@E@§+%%ﬁ?=q
(E_1oE10) F(ﬁ-T) + (Eg1Eq) — (E_Ery) (S_-li-_l—)

—mwm§+r=a (A5)

Together with (A2) these furnish the five equations
needed to evaluate the matrix elements (Al) as
functions of y, S, and T. In particular,
(01101
= (E_,Ey)
_SHDT+D@=S—T+S+T+4)
(25 + 3)2T + 3) |

- (A6)
(0_1101-) D

—(F _F. ) — —1-1T11
= (E-ufi) (T + DT + 1)

_TE+ Dy +3+S-Ty+1-S+T)

(2S + 3)Q2T + 1)

(AT)

which lead to the normalization coefficients of Table
VII.
The Representation [y y — 10]

The unit step operators O,y, Oy, do not give zero
when acting on the states of the representation
[yy — 10}, so that the construction of the state
vectors is more complicated than in the previous
example. However, from the relations

Iy y — 10KST} O_s—4045 Ily y — 10{ST})
=(yy—101{S + o, T + B}|
X 0440_o 4llyy —10|{S + o, T + f}) (AB)

with the four af values 11, 1 — 1, 10, and 01, four
equations are obtained, which, together with (A2),
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are sufficient to determine the five needed matrix
elements. Equations (A8) are essentially recursion
equations relating matrix clements of states with
S+ T=y—(k—1) (states shown in the kth
column of Table V) to matrix elements of states with
S+T=y—(k—1)+ a+ 3 [states in the (k —
« — B)th column of Table V]. General expressions for
the matrix elements must thus be evaluated through
recursion techniques. For this purpose it is convenient
to expand the shorthand notation of Eq. (A1) with a
subscript k& for states with S+ T'=y — (k — 1),
identifying the corresponding kth column of Table V.
The recursive process is sketched in this section.

Matrix Elements for States withk =1: S+ T =y
Since Eyy, Eyy, Ey give zero when operating on
states with k =1,

(E_y1En) = (E0E10h = (Eg1Eg), = 0. (A9a)
Also, Ey commutes with E_;, , which is equivalent to

O_y; when acting on states with k = 1. The matrix

element (EgEq), is thus independent of S and T and
can be evaluated from (A2) applied to the highest

weight state. This gives (EpEg) = 1. With these

four matrix elements (A2) can be used to evaluate
(BB =@ +HT -1 with S+ T=y.

(A9b)

With the relations of Tables II and III these lead to

(051010, =S + T - D),
E—HNT-HNS+T+1)

(01039 = ST
—— _(S=HE+T+1

(010101 = 25(T + 1) , (A10)
—, _T-=HE+T+1

(061091 = 2T + 1) .

Matrix Elements for States with
k=2:S+T=y—1

The basic recursion relation (A8) gives

(00—1001)2 = <{S9 T + 1}| 00100—1 I{S’ T + 1}>k=1
=(T+%)(S+T+2), (Alla)
AT+ 1S+ 1D
(0_10019)2 = <{S +1, T}l 010_10 |{S +1, T}>k=1
_SHDE+THD) (ALIb)
28+ 1T + 1)
where the right-hand side follows from (A10). Also,
since states with S + T = y + 1 do not exist,

(0—1—1011)2 = 0.

(Allc)
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Finally, setting «f = 1 — 1 in the recursion relation
(A8), and using the relations of Table II together with
the commutation properties of the operators and the
results (A11), a recursion relation is obtained for the

matrix elements (E_j,E;_4),:

{STH E_yE\; {ST}h—s

={S+ 1, T—1}E E {S+ 1L, T~ 1},
G+H+HE-T+1
28+ DS +2)T(T + 1)

+(S—T+2).
(A12)

+

With the initial term

{y— L HELEL Y — % e
= Mﬂ , (A13)
3(y—-9%
which follows from O,_; [{y — %, 4}) = 0, the result
of the recursion process gives
(EE) _S+HT+HE+T+2)
~11+~1-1/2 (S+ 1)(T+ 1)
+ S+ HT - (Al
This result, together with Eqs. (A11) and (A2) leads to

the five basic matrix elements (E_, 4E,), and the

remaining matrix elements (O_, ;0,5), With aff =
—-1-1,-10,0—1, —11.

Matrix Elements for States of Arbitrary k
The recursion equation (AS8) relates the matrix
elements (O_,_;04,); to those of type (0101 1),
and the matrix elements (O_;¢01,), and (Oy_,0q)

to those of type (0100_10)i_1 and (0,04 _y)._; . Since
matrix elements for states in the (k — 1)th and
(k — 2)th column of Table V are known, the matrix
elements (E_,_4E,p), with aff = 11, 10, and 01 can be
evaluated. Matrix elements (E_,,E,_;), are evaluated
from the recursion equation which is the analog of
(A12), while those with a8 = 00 then follow from Eq.
(A2). From the five basic matrix elements all others
follow.

APPENDIX B. TABLES OF SU(4) WIGNER
AND RACAH COEFFICIENTS

The SU(4) Wigner coefficients tabulated are those
involving products of the special SU(4) representations
enumerated in Sec. 3 with the representations [1], and
[2] or [11], needed for one- and two-particle cfp’s, as
well as products with [211], [22], and [422]. Wigner
coefficients involving the coupling with [22] and [422]
include only the coefficients for the diagonal matrix
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elements of the corresponding two-body operators
used in the applications. In those special cases where
the SU(4) Wigner coefficients coincide with the
numerical tabulations of Jahn and coworkers,?
there are differences in the phases of the coefficients.
Unfortunately, there is no simple relationship between
the phase conventions used in this work and the
earlier ones of Ref. 2 (which invelve many arbitrary
choices of sign).

The tables of SU(4) Wigner coefficients are pre-
ceded by Table A.0 listing all of the cases covered in
the subsequent tables. Other coefficients can be ob-
tained from these through the symmetry properties
(I)-(I1I), Eqs. (38)-(40), and (38').

The SU4) U coeflicients tabulated are those needed
to evaluate diagonal matrix elements of one- and two-
body operators; that is,

U2 SIS ®T 2T fonle)
with [f®] = [1], and [2], or [11], Tables VII and
VIII, respectively. The tables include the sums

T =n N[ po-n,
iy Ny
. U/ IS 0 [ople)
UL IAT; T 15 [0])

(B1)

and

S =tn(n—-1)

= Nin
« ULAIS XIS L0 Lople)
U1 2402 100D

with [f®] = [2] or [11]. The summations are over
all possible values of [f™V] or [f*-?], that is, over
all possible rows of Tables VII and VIIL. N, denotes
the dimension of the irreducible representation of the
symmetric group on n objects described by the Young
tableau [f].

The sums X, are expressed in general form in Eq.
(59). From the nature of the operators with irreducible
tensor character [422] and [22], Egs. (36) and (74), it
can be seen that the sums Z, with [f,,] = [422] or [22]
can be functions only of the SU(4) quantum numbers
and must be independent of nucleon number n. With
[fop] = [211], on the other hand, the sums X, are
functions of the full U(4) representation labels. In
Tables VIII, the SU(4) irreducible representation
labels [ f; — fi, fa — fu, fs — ful are expressed in terms
of the integers y. The label f; is replaced by the integer
x; the full U(4) tableau is assumed to include x
columns of 4.

Ny-n,

(B2)

24 J. P. Elliott, J. Hope, and H. A. Jahn, Phil. Trans. Roy. Soc.
London A246, 241 (1953).
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TasLE A.0. Organization of tables of SU(4) Wigner coefficients. [f] x [f*®]— [f].
[rvl (r1 if Table number
[yy0] i1] [y + 101, [yy1] All
y—~10] (] [yy0] Al.2
8933 1] y—1y—10] Al.3
[y00] 1] [y + 1001, [y10] Al4
[y10] (1] [y + 110, [y11] Al5
[y11] il [y'—100], [y +111] AlL6
[0l (1) +1y+10,[y~1y—10] A2l
[y00] [11] [y + 110], [y11] A22
yy~10] (1] y+10L i), [y —1y~201  A23
[yi1 {11] [y —1 10], [y00] A24
[yy~—10] 2] [y + 101, [yy1) A3l
[yy1l 2] yy—10,ly—1y—-11] A3.2
[y00] [2] [y + 110}, [y +200] A33
[y —110] 2] [y +110], [y11] A3.4
[y11] 2] [y + 2'11], [y — 1'10}, [y00] A3S5
[yy0] [2111 [»0] A4l
[y00] [211] [y00] A4.2
yy—10] [211] yy—10] p=1,2, A4.3
[yy—10] {211] y+1y+11] Ada
[yio] [211] [ylo], p=1,2, A4.5
1] [211] [y11], p=1,2 Ad6
[0l [22], [422] [0 AS5.1,52
[00] [422] [00] A5.3
[yy—10] [22], (422] yy—101 p=1,2 A6.1,6.2
[yin [22], [422] [yi1] p=1,2 A6.3, 6.4
TaBLE Al.1.
ST [y0] [100] || [y + 1 y0] / [yy01 [100] “ [y y1]>
1 MNVIHE + ST \ MVEHE
G=S—-T+O O+S+ T+
S+3T+1% T35 F 2(y+2)
G+S+T+N _[p—8S—-T+D
S—3T-4 T+ 2) 20+ 2) ]
(y—S+ T+t G+S~T+2)
S+iT-4 BT I T
y+S~—T+2]} _[G=S+T+)]
§$—iT+i T I 25 +2)
TaABLE Al.2, TaBLE Al.3.
ly y — 1 0] [100] || [yy0} [yy11 [100] || [y — ly —10]
STy ST B “ ST < ST
[y —=8—=T)S+ 1T+ D} (y+S+T+3)(s+1)(T+1)*
S+iT+i y2s+n@r+y S+iT+i +3)QS+D2T+1)
i [0+S+T+s S—3T— [ G—=S—T+1)ST 7t
§—#T-4 y2Ss+1)QT+ 1) ¥ ¥ [(y + 328 + DRT + 1)
_ (—S+ T+ DS+ DT S+ 3T — [+ S—-T+2(5+ NT}}H
S+iT—1 y285 + DRT+ 1D +i } O +3)2S+ DRT + 1ﬂ
S—3T+1 O+ ST+ DS(T+ D]} S—31T+} 5 =S+ T+ ST + )

y@S + DET + 1)

(+3@S+D2T+ 1D
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TABLE Al.4.
o [y00] [100] l Iy +100] [y001 [100] || [y10]
1 SiTy; 3 ST=S§ STy 3 | ST=3S
S+ D(y +1— 2574 S(y+3+25)
Stis+i G+ DES+D (y+l)(ZS+1)
Sy+3+257* S+ Dy +1-—25
S—i5-4 [(y+1)(2s+1) l: G+ DES+D
[00] [100] “ [y10] > ~ < (y00] [100] ” Dol \_
S—S—1% BISES—0/T\S+1S+4 #fjss+n/ 7
TABLE Al.5.
[y10] [100] || [y + 1 10] [y10] [100] | [y11]
ST ST S| s (r 1 “
y+1
S+E5—1 sS (2s+1)|: ] Vz
y+1 1
S—t5+4 55 (2s_+1)|:T] Vi
[QS=1)(S+ Dy +2+ 29}
S—1S5—1% S§S @S + Dyl 0
[(25 + 3)S(y — 2801}
S+ES+1 ss T EGh 0
S —Dy+2+28y+ 1)t S =Dy +2-297t
S—45—1 SE-1 [ S —1yG +2) ] 305 — Dy +2)
O +2+29(p +2 - 29 —SR20y + D}
S—tS5-1 S6=D  —GsThes+ o+ 2)] [@S—D@S + Dy + 2N
S+Dy+2-29+ D]t S+ Dy +2+287
S+tis—-¢  SE-D I 2S T+ 1y + 2 -l 265 + Dy +2)
[y10] [100] || [y + 1 10]> ~ <[y10] [100] ” [y + 1101\ / [y10] [100] H b\ _ <[y10] [100] ” [y11]
< TS; 8 || S—=DS/  \ SiT; 3% || SC—=1 /°\ TuSi; 33 || (S — I)S/ 5Ty 3 || S(S—-D/°
TABLE Al.6.
[y11] [100] || [(y — 1) 00] {y11] [100] || [(y + 1) 1\
STy 5T < ST 4 “ < STy H “ /
(S + D@S + )y + 3 + 2874 SQS +3)(y + 1~ 25)(y + D
S+i5+4 S8 (2s+1)[ 3G +3) ] (2s+1) Y7 +3)
—1 [S@S—D(y+1—2574 (S + DS — )(y + 3 +25)(y + 2
S—15-4 SS (2s+1)[ 3+ 9 (2s+1)[ o +3)
2 TS5+ Dy + 27t (G + 1 —25)y + 3 + 28)4
S+is5—14 58 @s+nlT 3G+ ] (2s+1)|: 30 +3) ]
2 [S6S+ Dy + 27 G+ 1 —28) + 3 + 25y
S—2S5+1 SS (2s+1)[ 3G +9) (2s+1) 7 +3)
S+ Dy +1—28574
S+iS—F  SE-1D ¢ +(2)§y:1)y 5
0 +2 ¢
S—1S—1% SE—-1 [}Tz._v’—"f)?m
S —D(y + 1+ 2574
S—i5-%  SG-D £ (z).(<>~y—+1)y+ >
<[y11] 11001 | [y + DU\ _ <[y11] 11001 || [y + D111
TSs s || 5=Ds /" \Si7Ti 4t || S5s-1 /°
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TABLE A2.1,
ST ST [pyo] [L10] || [y + 1y +10] [yy0] [110] [y—ly-—lO]\
101> S2la S1Ty; S:T, ST S$1Ty; S:T, /
S+1T: 10 [+ —S+T+2Yy—-S—T+ D]t [(s+1)(y+s T+2)(y+S+T+3)]§
’ 20+ Dy +2)2S + 1) 2(y+2)(y+3)(zs+ 1
’ 20+ D +2CT+ 1) Z(y +2)(y +HRT+1)
ST—1: ol Ty +S+T+HNy—-S+T+2)t |:T(y S—T+Dy+ 85— T+2)]
’ 20+ Dy +2QT+ D) 20+ d(y + 32T+ 1)
_ 3 —_ _ —_
S—1T; 10 [S@+S+T+3)(J’+S T+2)] [(y S—T+Dy—S+T+27}

20+ DG +2@5+ D)

20+ +H2S+ D

TABLE A2.2.

. [00] [110] |} [y + 1 10] / [y00] [110] || [y111\
5,Ty; 8,T,y ST SiTs; ST ST \SiTi; Tz || ST /
SS; 10 S5 -1v2 11v2
SS; 01 S8 —-1V2 ~1/v2

_ y+2+257} y+2-28

S—18—~1; 10 §(—1) SO FD 25 F2)

‘ _ y+2 =257} [y +2+28
SS; 01 §(5—1) [ 2y +2) 2(y +2) :I

—28 7% 442574

S+1S+1; 1085+ 1 - )2y+2) “szEy:z)

' y+4+28 y=28
SS; 01 S(S+1) Z(y +2) (y+ 2)]




yy—101[1101] [f1]
TABLE A2.3. STy; S.T ” ST/
5iTh; STy [f1=1y +10 [f1= Dyl [f1=ly—1y—20]
(@) y — § — T = even integer
S+1T;10 —[(ZS+3)()’_S‘D(V—S+T+2)* _ (ZS+3)(y—S—T)(y+S—T+2)]% [(ZS+3)(y+S+T+2)(y+S—T+2)}
’ By + 2+ 1 16y + Dy +2)(S+ 1) 80 + Dy +3)( S + 1)
ST: 10 _[(}’—S+T+2)(}’+S—T+2) 3 {+DRS+ 1)+ S+ T+ 1} [(y+s+T+2)0,_S_T) 3
’ 8y(y +25(5+ 1) A[(y + DG + 2)S(S + DI 8y + Dy +3)SES + 1)
S—1T:10 [(zs—l)(y+s+T+2)(y+s-—T+2); _|:(2S—1)(y+S+T+2)(y—S+T+2)é _[(2s—1)(y—s—n(y—s+r+z)t
? 8y(y + 2)S 16(y + D(y + 2)S 8y + Ny + IS
ST+ 1:01 _[(2T+3)(Y—S—79(Y+S—T+2)* QT+ y~S—Ny—-S+ T+ _[(2T+3)(y+S+T+2)(y—S+T+2)i
i YO+ DT+ D 16(y + Dy + 2T + 1) 8+ Dy +HT + D
ST- 01 _[(y+S—T+2)(y—S+T+2) H —{+ DT+ D+ S+T+1} _[(y—S——T)(y+S+T+2) 3
’ 8y + HT(T + 1) 4[(y + D@y + DT + DI 8y + Dy + HT(T + D
ST —1;01 [(ZT_I)(V+S+T+2)0’—S+T+2)"|* [(ZT—I)(V+S+T+2)(y+s—T+2) i [(2T—-1)(y—S—T)(y+S—-T+2) :
’ 8y(y + 2T 16(y + Dy + 2T 8(y + Dy + )T
(b) y — S — T = odd integer
S+17T: 10 __[(2S+3)(y—S-—T+1)(y—S+T+1)# _[(25+3)(y—S+T+1)(y+S+T+3)1} |:(2s+3)(y+s+T+3)0,+s_T+1)
+15 Y@ +2DES+ 1D 16y + DG +2)(S+ D 8 + DG+ S+ D
ST: 10 _(y+S+T+3)(y—S—T+1):|£ {+D2S+1)+S—T} l:(y—S+T+1)(y+S—-T+1)i
’ &Gy + 2SS+ 1) 4[(y + D(y + 2SS + DI} 80 + DO + )SE + 1)
S—1T: 10 [(2S—1)(y+S+T+3)(y+S—T+1)% _[(2S-—1)(y+S—-T+1)(y—S—T+1)é _[(25—1)@—S—T+1)(y—S+T+1)%
’ ‘ 8y(y + 2§ 16(y + D(y +2)S 80 + D + 3)8
ST+1:01 QT+ Ny —-S—T+ Dy +S—T+ D)} _[(2T+3)(y+S—T+1)(y+S+T+3)f} |:(2T+3)(y—S+T+1)(y+S+T+3)}
+1; - y(y +2X(r+ 1) 16(y + Dy + 2)(T + 1) - 8¢+ D(y + T + 1)
ST: 01 [(y+S+T+3)(y—S—T+1) H {(y + DRT+1) =S+ T} G+S—T+1y—S+T+1D]t
’ - 8y(y + DT(T + 1 4y + Dy FT(T + DP 80 + DO + HTT + D
ST—1:01 [(2T—1)(y+S+T+3)(y—S+T+1) i _[(2T—1)(y—S+T+1)(y—s—T+1)]i [(ZT—I)'(y—S—T+1)(y+s-r+1) H

8(y + 2)T

16(y + Iy + 2)T

8y + D + 37T

AWHHOS LHTAILTNWIHEINS YANDIM dHL

L6ST
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TABLE A24,
_ /Iy11] [110] || [y — 1 10] [y11] [110] [
Shi & ST \8:T; sn| st $iTi; STy
S+18S; 10 SS [(2s + 3)S(y + 2+ 28 + 2)] } [(2s + 3)(y — 2S)]
§S+1;01 S§ A4S+ DS+ y(y + 3) LT &S+
S S; 10 SS (y —29)(y + 2 +285)7]* [y+2i
§s§; 0SS 4SS+ Dy(y +3) &y
§—15; 10 SS [(2s — (S + Dy — 294 + 2)7* [(2s = I)(y + 2 + 25)7*
§§—1;01 SS 45C2S + y(y + 3) 6y2s+1)
S8 —1; 108(S—1) o+ + D]
S—-185; 01(S-1DS 4S(y+3)
§—185~1; 105 ~1) [(S—])(y+2-—2S)}
S§—18—-1;0(-1S 4S(y + 3)
$S; 01 8(5 —1) [(S+ D@y + 2 + 257t
SS; 10(S—-1)S 45(y + 3)
S§SS—1; 0185 -1 o+ 2S5 —-1)#
§—185; 10 (S — 1S TSy +
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TABLE A3.1.
ST ST [yy—1011200)|| [y +1y0] [yy—10][200]|[yy11
i S 8iTy; SiTy ST STy ST, || st
(a) y — § — T = even integer
S+1T+1; 11 0
s+im 1 _[(2S+3)(T+1)(y—S—T)(y—S+ T+ 274 _[(2S+3)(T+1)(y—S—T)(y+S—T+2 ¥
; Z4y(y + 2@ + DT 16(y — Dy + (S + DT
S41T—1: 11 [(2S+3)(2T—1)(y-—S+ Ny -5+ T+2)]i [(2S+3)(2T—1)(y—S+ D(y+s—T+z):|i
; 24y + D + VT 16( — D(y + 2(S + DT
S 1Tal 11 [(ZS—-1)(2T+3)(y+S—T)(y+S—T+2):|}_[(25—1)(2T+3)(y+S—T)(y—S+T+2)]}
+h H(y + ST+ D 160 — DO + DS(T + 1)
Ss—1r  n [(ZS—I)T(y+S+T+2)(y+S—T+2) b [(2S—1)T(y+S+T+2)(y—S+T+2):|i
- - 2y(y +2)S(T+ 1) 16(y — Iy +28(T+ 1)
S—1T-1; 11 0 0
ST+1: 11 — (s+1)(2T+3)(y'—S—T)(y+s—T+2)]* [(S+1)(2T+3)(y—S—T)(y—S+ T+ 2t
; 2y(y + DS(T + 1) 16( — Dy + ST + D
ST; 11 {ST+S+T
G+S—T+Dy—S+ T+t (S—DRST+S+T+y+2}
245(y + 2)8(S + DT(T + D [16(y — D(y + 5@ + DT(T + Dk
ST1 11 _I:S(ZT—I)(y+S+ T+2(y—8+ T+2):]§ _[S(ZT—I)(y+S+ T+2)(y+8—T+2)7
- 2y + 26 + DT 16( — Dy + 2 + DT
] G+S—T+D(y—S+ T+t (s—1)
st o | 0+ @G — DO + Of
(b) y — S — T = odd integer
{(2s+ 3)(2T+3)(y—s-T—(1y) o r I:l* [(ZS+3)(2T+ 3)?-—?:;—3];
_ X(y—S—T+1) X+ +
S+I1T+1 11 — Wy +IE+ DT +D L 16— Dy + 2 + DT+ 1
seim 1 [(2S+3)T(y—S+T+1)(y—S—T+1)i [(2S+3)T(y-—S+T+1)(y+S+T+3)i
g 2y + D@ + DT+ D 160 — DG + 96 + DT+ D
S+1T—1; 11 0 0
S—1T+1; 1 0 0
[(2S—1)(T+1)(y+S—T+(1) sor 3)}* [(2S—1)(T+1)(y+S—T(+ 1)S )T
i X (y+ + _ X(y—-S—-T+1
s—11; 1 24y(y + ST 16(y — DO + ST
[(2s—1)(2T—1)(y+s+ T-(I-l) s 3)}} [(2S-1)(2T—1)(y+S+T+1) i
. X(y+S+T+ x(y—S—T+1)]
S—1r-11 - 24y(y + ST 165 = D + 23T
ST+1; 11 [S(2T+3)(y+S-—T+1)(y—S—T+1)i S(2T+3)(y+S—T+1)(y+S+T+3)]i
' 2y(y +2)(S + D(T+ 1) 16(y — D(y + S + DT + 1)
ST, 11 —{(ST+S+T+1}
G+S+T+Ny—S—T+ 1)t (S+T+1D{y+1—S§—T—2ST}
X [ 24y(y ¥ DS(S + DT + D) [16(y = DO + D56 + DIT + DIt
|:(S+l)(2T—1)(y“S+T+(;)+S+ r 3):,* [(S+1)(2T—1)(y—S— T(+ D i
. x +3)| X(y—S+T+1)
ST—-1; 11 25y + ST 16( — D(y + 25T ]
. Y+S+T+Hy—-S—T+ 1)t S+7T+1)
st % ST ] iy =y + OB
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TABLE A3.2.
[yy1] 2001 || [y y — 1 0] [yy111200] || [y — 1y — 1 1]\
STy STy <51T1; ST, ” ST > SiTy; ST ST
(@) y — § — T = even integer
QS+HCT+H(p+S+T+2) ¥
SiiTaLn [(2S+3)(2T+3)(y—-s—T)(y+S+T+4)]§ [ X (y+5+ T+4)}
’ 6( + Dy + HES + DT+ D %G F DG+ IS F DT+ D
. [@S 49T =S - Dy +5-T+2) ! _[(2S+3)T(y+S+T+2)(y+S—T+2) :
SHIT 1~ "+ Dy +9GE + DT + D 24y + DO + G T DT + D
S+1T—1; 11 0 0
S—1T+1; 11 0 0
@S —DT+Dy~S+T+2) !
_ [ x(y+S+T+2):l _[(2S——1)(T+1)(y—S—T)(y—S+T+2) ;
S-11 1 16(; + Dy + ST 24 F D + HST
@S — DT =Dy —S—T+2) }
_ [ X (y+ S+ T+2)i| [(2S—1)(2T—-1)(y—-S——T)(y—S—T+2):|i
S—1T-L 11 = 160y ¥ Dy + ST 5%y + D + ST
_ [S(2T+3)(y—-S—T)(y-S+ T + 27t [S(2T+3)(y—S+ T+2(y+ 8+ T+27}
ST+ 1 160 + D + H(S + DT+ D % ¥ DG F I + DT+ D
—QST+S+T+1)
ST 1 S+ T+Diy+2+ S5+ T+25T} x[ G-S-NDy+S5S+T+2 7t
’ [{6( + DO + HSE + DT + DI %0 + D + 56 + DIT + D
S+DRT— Dy +S5+T+2) !
_ [ X(y+S—T+2)] [S+DT =Dy =S=D+5-T+2]t
§T-1 11 - 16(y + D(y + HST 2407 + Dy + HST
ST 00 -S+T+1 |:(y—S—T)(y+S+T+2) i
’ My + Dy + HB 6(y + D(y +3)
(b) y — § — T = odd integer
S+1T+1; 11 0 0
QS+ )T+ Dy — S+ T+1) 1 TES+IT+ DY +S+T+3) ol
XGG+S+T+3) X(y+S—T+1)
S+1n 1t 160y + D(y + A + DT J L 2 + DG + @ + DT A
r@S +3)QT— )y —S+T+1) QS+ )T - DG+ S —T+3) T
X(y+S—T+3 Xx(y+S—T+1)
S+1T-1 11 —| 16( + DG + A6 + DT 1 7L 245 + D + 9B + DT )
QS — DRT+ Ny +S—T+1) T [@S~DET+3)y—S+T+3) o
X (y—S+T+3 X (y—S+T+1)
S-IT+LAL 165 + DG + HST + D 4L 234G F DG F ST+ D ]
coir 1 __l:(ZS—-l)T(y—-S—T+1)(y+S—T+1)]i [(ZS——I)T(y—S—T+1)(y—S+T+1) ;
; 16( + Dy + HST + 1 2G5 + Dy + IST + D)
S—1T—1; 11 0 0
S+DCT+Hy+5+T+3) % S+DRT+ 3Ny +S+T+3) 3
X(+S—T+1) X(y—S+T+1
ST+L 1 [ 160y + DG + HST + D ] [ 2% + DO + DST + D ]
QST+ S+ T}
ST 1 (S—THy+1—85—T-—2ST} x[(y+S-—T+1)(y—S+T+1)]i
; (160 + Dy T HSE + DI(T + DI} 240y + Dy + HSG + DIT+ D
STotin ~[SSTZDO=SSTHDG-SHTrO]_[SOT- DY -S< T4 Do+ S—T+ D)
; 160y + D(y + S + DT 240+ Dy + IS + DT
ST 00 —(§—1) +S—T+Dy—S+ T+ 1)t

4y + Dy + 412

6(y + D(y + 3)
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TABLE A3.3.
' / [y001 [200] || [y + 1.10}\ [y00] f200] || [y + 2 00]
ST ST, ST \S:T; S|l st/ STy STl ST
. _[S@S +3)(y —29) + 4+ 25)]4 28 + 3y — 28)(y + 2 = 25)]¢
S+15+1L; 11 S§§ [ 0+ G + DES + 1) I: A+ DG +2ES+ D
i S+DES—D(y +2+29(y +2 — 28] Q@5 —D(@y+2+29p+4+281
§—1s-1L 1SS [ 30 + 2)S@S + 1) ] [ A+ DG +2@S + D ]
' {y+2— 25 + 1)} (3 +2—25)(y + 4 + 2574
§8§ 118 2y + 256 + DIt [ T DG +D
' _[28(s + )¢ G +2-290 +4+29)
ss; 00 SS y(y“)] | G+ DG+ ]
S S5 11 8¢5 -1 [(S+1)(y+2—25) ¥
§S; 11 (S—DS s
S—18—1; 11 S5 —1) [(S——l)(y+2+2S)&
S—1S—1;11 (S— 1S 25
TABLE A3 4.
. [y — 110] [200] || [y + 1 10}\ /1y — 110] [200] || (111
$1Ty;  SeTy ST < STy ST, H ST / \ §:Ty; STy ST /
) 1 S(S + 225 + Ny —2 —29)(y — 257
S+i1s+1; 11 SS 2(s+1)[ 70 — D@S + 1) ] 0
S+1s; 1SS 1 [QS+3)( — 257 @S + 3)(y — 25)
SS+1; 11 SS IS+DLG-DESFD 5 —DES T D)
' (8 + 8 — 1I[(y - 25)(y + 2 + 25)#
ss S5 55T Yy =D ] 0
SS—1;11 8§ _1_[(25—1)(y+2+2S):|% |:(2S—1)(y+2+2S) !
s—1s; 11 8§ 25 g-p@s+D a5 — @S + 1)
' 1S = (S + D@S — D + 2 + 25)(p + 257
§—15-1 11 8§ 55 Y7 =DES+ 1) ] 0
_ (=290 +2+297
Ss; 00 SS [ o= :| 0
_ (@S + Dy — 25)(y + 2 — 2857 (@S + 3)(y — 25)(y + 2 + 25y
S+1s M ss-1 23— DO+ DS+ 1) “LTap - np+2@s + 1 ]
_ L 1[G —2S)y + 2+ 25)( +2 — 28)]¢ yy—28 Tt
§5 M SS5=1 35 Y5 =DG +2 LG -10+2
o 1S = DE+ DG +2+ 29 +2 257 (S — 1S + D
ss—1; 11 s5-1 g O -Do+2 _[(y—l)(y+2)
1 L, S +2+429(p+2-25) —p+1)
§—-18 M S§-1 55 [(y 10 +2@S + DES — D [ — Dy + 235 — DES + DI
_ _1. o ST 4290 + 2 +28)(y + 2 — 287 _yy+28) T*
s—1s-11 ss—1 35| Yo —D(y+2) _[4(y—1)(y+2)
. _ @S — 3)(y + 25)(y + 2 + 25)]* @S — Ny + 25y + 2 — 28y
§—18-211 §§-1 428 —-Dly - H(y +2) ] 428 — Dy — Dy + 2)
L _ G +2+28)(y +2 — 257* —s
ss-t;0 ss-1 | 25— Dy +2 RS
<[y -1 10j [200] “ [y + 110} -4 [y— 1 10] [200] ” [y + 110} .
TS: TS || S—0s/)~ STy ST, || S6s=1 )
[y — 1 10] [200] ” ] \ /Iy~ 110] [200] ” [y11]
TS LS S-S/~ "\ &Ts ST [[s6—-1/
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TABLE A3.5.

. /11 12001 || 1 + 2 1IN [y11] [200] ”[y- 1 10]> <[yll] [200] “ [00]
S$iT43 ST, ST \SlT1§ ST, ST / S:Ty; 83T ST 8§:7y; SxTa SS
Stist+t 1 ss S(S + 2)28 + )y + 2 — 2S)y — 28)y + D} _[S(s+ 228 + 3)(y+2+2sxy+4+2S)]i [(S+ 2@2S + Ny — 25}y + 4 + 25774
+1s+1 4G+ DO+ DES + DE F 1P B+ NS + S + 1) OO+ S + D25+ 1)
S+1S; 1SS _[QES+I0—290+2-25)p+4+ 254 _[S’(25+3)(y+2+25')(}’+ 2 [SQS“)(Y‘ZS)(V“) !
Ss4+1; 11 SS O+ DO F DS F DS F1° §(y + 3@ + DS + D* S0+ OE + DS+ D
s ou s SSAD=D[0+2-290+ 442904 D] S+ D41 (0= 290+ 24 2978 RN+ 1)+ 0 4 2}
’ 2565+ D 7o+ 00+ 8 PGV ) (&0 + 9SE + D
Ss—1; 11 Ss —[(ZS—1)(}'+2—2S)(y+2+2S)(}’+4+2S) i S+ DS - DOy — 290 + D74 8+ D@S = Dy + 2 + 29 + 274
S—ts 11 s H0 + Dy + HES + DS &0 + H@2S + DS &0 + 9SCS + 1)
S—is—1:11  ss [(s—l)(s+1)(2s—1)(y+2+2S)(y+4+2S)(y+2) } _[(s—1)(S+1)(25—1)(y+2—23)(y—23) P_[S=nes—ho+2+290+2-29)
; 50T D0 T HES T DS B0 + DEs + DS "[ 60 + HSES + 1)
) O+ 2=250+ 4+ 250 + 2t (v — 25Xy + 2 + 25)]4 28(S + 1)7#
S S; 00 S8 I: O+ DO+ 3 l: 8y +3) [3)’()’ +4
_ @S + )y + 2 — 28)(y — 28)7#
S+1s 1 SS—-D Ho+ DESF D ] ’
- 170+ 2(p+ 2 —28)7 S+ DMy +24+ 254
58 11 s—-1 Zv[——yTy_-FT)_' 28 [ 200+ 3)
. 1 [(S+ 1S — Dy + 2+ 28 + 2 — 254 1 [+ (S = DO + 2974
§SS§—1; 11 SS—1) ZTS[ Yo+ D 25 2(y+3)
. =1+ 2 + 25Ky + 2 — 28)7# 1res—nes+ nu+2i
S—18; 11 S(s—1 35 O+ D2S—DES+ 1) 25 2+ 3
_ 1 [+ 20 + 2+ 2574 _E-Dlo+2-297
S—18—1; 11 SIS —-1) z—s[——ml)—-— 28 I: 2(y + 3)
) (28 — 3y + 2 + 28}y + 254
S—15-2; 11 S(S—1 [ 40+ D5 =1 ’
. O+ 2425 + 2 — 2574 _[o+ 274
§S—1;00 SS—1) [ Ho+ 1) 8+ 3)
<[ym ool 11\ _ <"‘” RO} i1\ porporn UI=Ly+211)
1,8, T35, || (5 — DS STy Ty || S5 — 1) 1= -110.




THE WIGNER SUPERMULTIPLET SCHEME

TaBLE A4.1.
. [yyol 2111 ]| [yp0]
S$:Ty; S:Ta S$i1Th; ST || ST
. E+ DT+ -S-Dy+S+ T+
S+1T+1; 11 - @S+ DT+ y(y + 4 ]
_ 1 S+ DTG-S+ T+ Do +S5—-T+ 3N
S+1T—-1; 11 @S+ DERT+ y(y +4) ]
- : ST+DHO+S—T+ DG -5+ T+ 3]
S—1T+1; 11 [ QS + DT+ y(r + 4
o [STG=S—T+2(y+S5+T+2]}
S—1T—-1; 11 [ QS+ DT+ )y +4
_ S(S + 1)]*
ST 10 [y(y+4)
. (T + )]}
ST; 01 l:y(y+4)
TABLE A4.2.
_ [y00] (2111 [y00}
S1T1: Sng SlTl; SZTﬂ H ST >
S+is+1; 1 —[@S+IG =290 +4 + 297
@S+ D3y + 9
SS; —0o+2)
By(y + Hi
S—1S—1: 11 _[(2s-1)(y+2-2S)(y+2+2S) H
’ QS F 3y + 4
sS; 10 [4S(S+ D#
SS; 01 3y + 4
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TABLE Ad.3.
/lyy—10] [211]” [yy~10]
\ S$iTy; 55Ty
STy SaT, p=1 p=2
(a) y — 8 — T == even integer
S+1T+1:11 _[CS+3ICT+Ipy—S—Dy+S5+7T+ 47 0+ —DIES+IRT+ N —S— Ty + S+ T+
4SS + DT+ D@2 + 12y — 1) 406(S + DT + D(y — Dy + D + ) + H@* + 12y — D
S+1T: 1 _[(2S+3)(y—-S—T)(y+S—-T+2) ¥ QG+ 1)+ D+ TE@ + 12y = PERS+Ny =S =N+ S—T+ 2}
’ A+ DIT+ D@+ 12y — 1D 4[6(S + DT(T + D(y — Dy + Dy + 2y + H@* + 12y — DR
S+1T—1: 11 @S +HQT—Dy ~S+ D@+ S~ T+ 2} 1O+ DS+ HQT— DY - S+ D+ S~ T+
’ a5+ DT@" + 12y — D 46(S + DT( — Dy + D + Dy + D@ + 12y — DJF
sT+111 | LEI=—S-De-S+T+27* {Qy + 1)@ + D+ 5@ + 12y = BIRT+3)(p — S — Ty — S + T+ i
’ 4SS+ DT+ D@y + 12y = D 4[6S(S + T + Dy — Dy + D + 2y + D@ + 12y — DI
{1}(16}13 + 48y + 41) — [S(S + 1) + T(T + DI@y* + 12y — 1) }
ST u - {(+D+25+ T+ D} — 28+ DT+ H2y + N2y  + 6y —5)
’ 4SS + DT(T + D@* + 12y — DB 46S(S + DT + Dy — DG + Dy + D@ + H@y® + 12y — DI
ST—1: 11 [(2T—1)(y+S-—T+2)(y+S+T+2) H 2y =Dy +2D+ S@* +12y — BT - DY+ S— T+ + S+ T+ 2B
’ 4SS+ NT@* + 12y - D 4[6ST(S + DO — Dy + Dy + Dy + H@* + 12y — DI
S—1T+1: 11 [(ZS—I)(2T+3)(y+S—-T)(y—S+T+2) H @+ 1B+ DIES—DRT+ G+ S— TNy =S+ T+ 2
’ 45(T + D@ + 12y — 1) 4165(T + Dy — Dy + Dy + 2y + H@y* + 12y — DI
S—1T 1 [(25—1)(y+S+T+2)(y—-S+T+2) ¥ Qy =Dy +2)+T@ + 12y — DIRS — Dy + S+ T+ 2y — S+ T+ DB
’ 4ST(T + D@y* + 12y — 1) 4[6ST(T + DOy — Dy + D(y + 2y + D@7~ + 12y — DF
S—1T—1: 11 _[(2S—-1)(2T—~—1)(y—S-—-T+2)(y+S+T+2) P g+ DRSS —DRT - Dy =S =T+ 2y + S+ T+ )f
’ 4ST@y* + 12y — D 4[65T(y — DO + DG + 2@ + H@* + 12y — DB
S+1T: 10 0 [2S+3)y =8~ Ty + S — T+ 2)dy* + 12y — DI}
4[6(S + Dy — D(y + Dy + 2)(y + D}
ST 1 4SS+ Td {[(dy* + 12y — DRy + 3) + 2S + DT + D] — 362y + 3)8(S + 1}
’ @ + 12y — 1) 8[65(S + Dy — Dy + Dy + Dy + H@® + 12y — DI
S—1T; 10 0 _[@S—DO+85+T+2( -85+ T+ 2@+ 12y — D}
4[6S(y — I(y + Dy + 2y + )t
i RT+H(y — §— )y — S+ T+ 2)(4y* + 12y — 1)
ST+1; 01 0 A6(T + Dy — Dy + D + 2)(y + A
ST o AT(T+1) {[@y* + 12y — DIQRy + 3) + 25 + DRT + D] — 362y + HT(T + 1))
@y ¥ 12y = D SI6T(T + D)(y — D(y + D + 2y + D@y + 12y — Dt
ST—1; 01 0 _eT-Dy+ S+ T+ + 85— T+2)@?*+ 12y — i

4[6T(y — D(y + D(y + Dy + HIF
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(b) y — § — T = odd integer

S+1T+1; 11 _[CS+ICT+IG—-S—T-D@+S+ T+ W+1Y@+DES+HCT+Hy—S—T-DE+S+ T+
A4S+ DT+ D@ +12y — 1) 416(S + D(T + D(y — Dy + Dy + Dy + H@y* + 12y — DI
S+1T i _[(2S+3)(y—S+T+1)(y+S+T+3) i =D+ +TE + 12y — YRS+~ S+ T+ D+ S+ T+ )P
’ AS+DTT + D@+ 12y — 1) 4[6(S + DI(T + Dy — Dy + Dy + 2(y + H@* + 12y — DR
SH1T—1: 11 [(2S+3)(2T—1)(y+S~—-T+3)(y—S+T+1) H @y =Dy +DRS+HQT - DNy +S—T+Ny— S+ T+ D}
’ A4S+ DT@y + 12y — 1) 4[6(S + DTG — D@y + DO + 2y + H@ + 12y — DB
ST+1: 11 __[(2T+3)(y+S—-—T+1)(y+S+T+3) 3 Ay =DU+2) + 5@+ 12y = DHET + )+ S— T+ Dy + S+ T+ PP
’ 4S(S + D(T+ D@y* + 12y — 1) 4[65(S + (T + D(y — D@y + D(y + 2(y + H@y* + 12y — DI
{1}(16}# + 48y + 41D — [S(S + 1) + T(T + DI@* + 12y — 1) }
ST 1 - Ao+ =25+ DT+ ) +2(8 + DT+ HQy + N2y + 6y — 5)
’ [4S(S + DT(T + D@ + 12y — DE 4[65(S + DT(T + Dy — Dy + D(y + Dy + H@y* + 12y — DB
ST—1: 11 [(2T—1)(y—S-—T+])(y—S+ T+1):|i B+ +SEP 412y = HRT - Dy =S+ T+ Dy —S— T+ D
’ 45(S + DT@y* + 12y — 1) 4[6ST(S + D(y — Dy + DU + 2(y + H(@* + 12y — DR
S—1T+1; 11 [(ZS*I)(2T+3)(y+S—-T+1)(y—S+T+3) i Q=D +DRS-DRT+Hy +S—-T+ Dy —S+ T+ 3P
’ 45(T + D@y + 12y — 1) 4[65(T + Dy — Dy + Dy + (¢ + D@y + 12y — DI}
S—1T: 1 [(25-—-1)(y——S——T+1)(y+S——T+1) H @y + 1+ D+ T+ 12y - DRSS =D + S - T+ Dy —S—T+ DR
’ 4ST(T + DEy* + 12y — 1) 4[6ST(T + D(y — D(y + DY + 2y + H@y* + 12y — DB
s—t17-1;u _[@EZDET-DO-S-THDG+SHTHIF @+ 10+ DS —DAT - DG + 5+ T4+ D0 = 5 = T+ i
’ 4ST(4y* + 12y — 1) 4[65T(y — D(y + Dy + 2(y + H@* + 12y — DI}
S+1Ts 1 0 QS+ 3@ =S+ T+ 1)y + S+ T+ 34+ 12y ~ Dl
’ 40605 + Dy — Dy + Dy + Dy + HP
ST, 10 E;ﬁﬁiiL_* {I@y* + 12y — DIRy + 3) — (25 + DT + D] — 36Qy + 3)S(S + 1)}
’ @yt + 12y — 1) 8[6S(S + D(y — Dy + Dy + 2(y + )@y2 + 12y — DI
Se17 10 0 S =D+ ST+ Dy —85~T+ D@y + 12y — Hi
’ 4[6S(y — D(y + D@ + 2y + DI
ST+1; 01 o RT+H G+ S =T+ DY+ S+ T+ 3HEy*+ 12y — DI
46(T + Dy — D + Dy + 2)(y + D}
ST o1 AT(T+ 1 {[y® + 12y — DIy + 3) — 2S + DRT + D] — 362y + HT(T + 1)}
@y* + 12y — 1) 8[6T(T + D(y — D(y + Dy + 2)(y + H@y* + 12y — D}
ST—1; 01 0 _eT-D =S+ T+ Dy —8S—T+ DA + 12y — Dt

A6T(G — Dy + DG + D(y + DT
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TaBLE Ad.4.
[yy—10211]||[y+1y+11]
S$:1Ty; 53Ty ST
§iTy; ST y — 8 — T = odd integer y — § — T = even integer
S+1T+1; 11 QS+IT+Ny—-S—T+Dy—-S—-T—1) 0

32(S + D(T + Dy(y +2)
S+1T; 11 -

32(S + 1)(T + y(y + 2)
S+17T-1; 11 0

ST+1; 11 — RE + DT + Dy +2)

ST, 11 —(5+ T+1)[(y

QS+ YTy —S—T+Dy—S+ T+ Dt

|:S(2T+ Ny—S—T+Dy+S5—T+ D]}

+S8+T+3Hy—S—T+ 1))

325(S + DT(T + Dy(y + 2)

ST—1;

RS +2)
S—1T+1; 11 0

" [(S+1)(2T—1)(y—S+ T+)(y+S+T+3)]

S—1T; 1 [(25—1)(T+l)(y+S+T+3)(y+S—T+1)

328Ty(y + 2)

[BS=DOT_DOASHTE DY +S+THY :

§—-1T0; -1 325Ty(y + 2)

10 I:(ZS+3)(y——S-— T+)y-—-S+T+ 1)]*
32(S+ Dy(y +2)
y—S—T+hHiy+S+ T+3)]*
325(S + y(y +2)

S+1T;

ST; 10 —(2S + 1)|:

o CS—Dy+S—T+ Dy +S5+ T+
§—1r1; 10 I: 335y + 2)
s _ }
sTin o [CTHIO-S—THDG+S-T+1

2T+ Dy(y +2)

) G—S—-T+DHy+S+T+3)t
ST, 01 —2T + I)I: BT+ G + 2
[(ZT—I)(y—S+ T+ Dy +S+ T+

RTy(y +2)

ST—1; 01

[(2S+3)(T+1)(y—S— T)(y—S5+ T+2)]*
32(S + DTy(y + 2)
_[(28+3)(2T—1)(y—S+ T)y— S+ T+2)7}
T 32(S + DTy(y + 2)
_I:(S+1)(2T+3)(y—S—T)(y+S— T+2)t
328(T + Dy(y +2)

G+S—T+Dy—S+ T+2)]¥

—6- T)[ 256 + DT + Dy(y + 2)

[S(ZT— DG+S+ T+ —S+ T+

3205 + DIy(y + 2)

[(25— DT+ IG+S—Ty+S—T+)}
328(T + Dy(y + 2)

]i _[(2S-—1)T(y+S+ T+2)(y+S—T+2)7t

328(T + y(y + 2
0

[(2S+‘3)(y—S—-T)(y—S+ T+2):|}
BE+ o+
G+S—T+2y—S+ T+t
’(25+1)[y 32S(S+1)§vy(y ¥2) :I
[(25—1)(y+s+T+2)(y+s—T+2) i
328y(y +2)
_[(2T+3)(y—-S—-T)(y+S—T+2) ;
2(T+1y(y+2)
G—S+T+p+S—T+)|t
@T + 1)[ RT(T + y(y + 2)
_[(2T—1)(y+S+ T+2)(y—8+T+27t
BTy +2)




[y10] [211] | [y10]
TABLE A4.5. S.Ty; SiT, l
S$iTy; STy ST p=1 p=2
s+1s-|§1- 1 sS _[S56 +2)2S + )y — 1 — 25}y + 3 + 29)]¢ G+ [SE+2RS+ ) — 1 —28)(y +3 + 2574
’ RS+ DS+ DGy +DCy+7 2+ DL 225+ DO DO +Hy+ DGy +D
s+15; 11 ss QS+ +3 + 294 {(y—ll)+S(3y+7)}[ (25 + 3)(y + 3 +25) ]ir
SS+1; 11 X (s + DL S+ DBy + D S+ 228 ¥ Dy — D(y + DGy + 7).
S S: 11 SS O+ —(+3)SE + 1} {+ D@ +9) + 202 — y — 10)S(S + D}
’ S+ DIy + D@y + DI 25(S + D2y — D@y + H(y + DGy + DB
sS—1; 11 sS —1[(2S = D(y + 1 — 28)T# —{2(y + 9) + SGy + 7} QS — D)y +1—25) i
§—18; 11 SS SL@Ss+nGy +1 45 @S+ Dy - DG + HGy + D
S—1S—1: 11 s _—.-_I[(S—-l)(S+l)(2S—1)(y+l+2S)(y+1—2S)i QO[S = DS + DES — D(y +1 +28)(y + 1 — 28)]#
’ S S+ DG+ DGy +D 28 208+ Dy — Dy + DG + DBy + 1
S+1s; 10 SS 0 S(2S+3)(y+3+2S)(3y+7)]*
S85+1; 01 SS 32(S + DS+ DY — Dy + 9
S—18 10 S5 0 S+ DERS— Dy +1 —283y + Dt
§S§—1; 01 X 325Qs + N - DO+
$S; 10 SS 45(S + 1) ] DGy +T -4y + 9SS + 1)}
ss; o1 SS G+ DBy + 4RSS + Dy — DG + D@ + DBy + DI
) _ (ZS+3)(y+3+2S)(y+1-—ZS)i _ @2S+3)y+3+29@p +1—-25 T
S+185 11 §§—1  —|—FG5y 1)(y FDGy D o 11)[32(25 F DO = DG + D0 + DGy + 7)]
] _ y+1—2 20 +9) + SGy + 7)) (y+1—25 ¥
§§ 1 SS-1 Gy + 7 4S [Z(y —DG FHCy + D
. 3 176 = DS + Dy + H# _QHN(S=DE+ D+ 1)
§S-L 11 §85-1 [ Gy D 35 26— Dy +9Gy + D
S—1s: H SS—1 {y + 1 +45% {( + Dy + 9 — 25°Gy — D(y + 9}
: S[(2S ~DES + 1)(y + DGy + Dl 252ES — DES + D — D + D@ + DGy + DIt
e, _ y+1+2 20+ 9 —SGy + 7 G +1+28) #
§-18-L 11 §§5-1 Tt 75 [2(y—1)(y+4)(3y+7)
e : _[@S =3 +3 =29 +1+25)] QS—NY+3 -2 +1+25 T+
S—1§=21  §§5-=1 [ @s —~DG + D0y + 1) - ”)[32( DG — DO + Dy + DGy +79)
SS§S—1;10 SS§—1 _4Sts+ D T4 __+DGy+D+200 —1DSHS +1)
] G+ DG+ 425(S + Dy — DGy + H@ + DGy + D}t
] S—Dy+1+29Cy + 7N
§-15—1;10 SS-—1 0 —[ B =10 9
. S+ Dy +1-—28)0Cy + 7N
ss; 10 ss—-1 0 —l: 250 =Dy + 4)
SS—1:01 SS—1 _4S-DS_T# {(+ 1By +7 —2(y — IDSHS — D)

(y + DBy +7)

42— DSG - Dy +H(Q + DGy + D}t

/[le] [211], [y10] > _ [y10] {211]
\Tlsl; T3Sa | (S — 1), - $:Ty; SaT:

[y10]
ss -1/,
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[y111 2111} [y11]
TaBLE A4.6. <5{ T,; ST, “
VIV ST p=1 p=2
S+1S+1;11 55 —|S@S+3IE + 2@~ 2@ +4 + 2974 ) S(S+2)(2S+3)(y—-25)(y+4+25)]i
’ QS+ DE + DG +2Gy + 2 25+ DL2@S + Dy — D& + H( + 2Cy + 2)
S+18; 11 S8 1 QS+ 3)(y—297t 2y ~ 6) — (S + DBy + 2)}[2 (25 + 3)(y — 25) ¥
SS+1; 11 S8 S+ DLRS+ DBy +2) 45+ 1D @S + Dy — Dy + DBy +2)
ss; 11 sS o +2) — yS(S + 1} {y + 20 — 6) +20* + Ty + )S5(S + 1)}
’ S(S + DIy + D0y + D 25+ D20 — D@ + Dy + DBy + DI
sS—-1; 1 ss 1728 — Dy + 2 + 257 {2(y-6)+S(3y+2)}[ (25 — Dy + 2 + 29) i
s—18 1 SS SLTaS ¥ ey +2 45 228 + Dy — Dy + DGy + 2).
S—18~1; 11 SS _1_[(5-1)(S+1)(2S-1)(y+2+259(y+2—2S)i -9 (S--l)(S-!—1)(23'-—1)(_}‘+2+2S)(y+2—25')]}
’ s RS+ D@ +2)Gy +2) 28 225+ DOy — DG + Dy +2)Cy +2)
S+15; 10 SS 0 SQS+ My —2503y+2) 7t
SS+1; 01 ARy RS+ DRSS+ DY - Dy + 4
58; 10 SS _4s(s+1) ¢ {G +2)3y +2) + 4y — 6)S(S + D}
§S; o1 88 (o + 2By + 2) A28+ Dy — DG+ HG + )Gy + )F
§—18; 10 SS 0 (S + DS — )y +2 + 253y + 2)#
S8 ~1; 01 SS 328QS + Dy — Dy + 4
S+18: U S§s—1 _|[@S+30-290+2+2574 (y+14)[2 QS+3¢p—29@+2+25) 7t
’ S+ Dy + 2)(3y +2) QS+ Dy — DG +HQ +2)Cy +2)
1My +2 +28)1¢ {2(y—-6)+5(3y+2)} y +2 425 i
§s; 1 Ss—1 y(3y+2) [2(y—1)(y+4)(3y+2)
S~ DS + Dy + 2)7+ — 6) (S-—l)(S+1)(y+2)
SS—-1;11 §S~—1 —~[( (§y+2}(y ) ”(yzs 20 = DO+ HBy +2)
{{y +2) —45% {(y +2)(y — 6) — 25*(y — D3y -+ 10)}
$—18; I ss—-1 5[(25 ~T10S F 1)(}, T 20y + Dl 25228 — DS + Dy — Dy + 9@ + D0y + )P
+2-2 {SGy + 2) — 2(y — 6)} (y +2—25) 3
S§—18-1;11 S§S-1 (y(3y+2)S) > 45 z [Z(y—l)(y+4)(3y+2)
S—18S—2;11 S§§S-1 — (23_3)‘J’+257<J’+2’“2S)* (y+14)[ QS =3y +29)(py +2~—28 i
’ @S — Dy + 2By +2) 225 — Dy ~ Dy + Hy + DBy +2)
_4s(s+1) ¢ {(y + Gy + 2) - 25(y + 1S + DI
55-1;10 SS5-1 O 428G - D + 90 + 26y + IF
5~ Dy +2—250y + 2t
S—1S-1;10 SS—1 0 -[ 325)(’}'"-1)QY+4{
AS —-1s 1 {(y + 23y + 2) + 25(y + 14}[(S — D}F
§S-10  §5-1 [(y T20y + 2)] T TARSGy — Dy + A + D06y + OF

[(s + Dy +2 429Gy + 21
S S; 061 SS-—1 0 - 3250.—- Dy + 4)
/bl ruy|| pul <[y11] [2111“ b1} \
\T:S:; TuSe || (5 — l)s/,, SiT; S| S(S—1) /o
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THE WIGNER SUPERMULTIPLET SCHEME

TaABLE AS.1.
ST, [p0] 22| [0\
e ST; ST,|| ST /
00 {T(T + 1) — S(S + 1}
2y(y + D + 3@ + DB
(T+1) i
02 —{y+ DY+ +T(T+1) - SES + 1)}[2 T e T T
S(S+1) 3
20 G+ DG +3)+ 56+ 1) — T(T+ 1)} [2 TR T
TABLE AS.2.
/ Iyl 1422] || [yyol\
o \ ST; ST, || sT /
00 {58(S + 1) + ST(T + 1) — 2y(y + 4)}
36y(y — D@y + H(y + Nt
ST(T + 1) i
02 HITT+D+SE+1 =y +4 -9 [6(2T et s
3841 i
20 HISS+ D+ T(T+D—y(y+4— 9}[6(25 G TG = DG T

TABLE AS.3.
[00] [422] || [y00]
STy SS; ST, || S8
00 {20S(S + 1) — 3y(y + 9}
20y(y — DG + H@ + i
02 1 I:SS(S + DS + 3)(2S — 1)]%
20 3Ly y~-DOy+9(y+5)

TABLE A6.1.

lyy—101[22]||[yy—10]
ST ST; ST, “ ST
00 {T(T+ 1) — 5(S + 1)}
26— DO + Dy + 20 + )P
20 {(+ Dy +2)+ S+ 1) — T(T + 1)} [(2s - DRSS + 3)];
420 - DO+ DO+ + Hi S+ 1)

02 o+ DO+2)+ T(T+1) — S + D} [QT — HRT + 3)}
ARy -DH+ DG+ + DI T+
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TABLE A6.2.
o [yy—lO][422]”[yy—10]>}
243 P ST; S, T, ST
0 1 {(4y* + 12y — 1) — 10S(S + 1) — 107(T + 1)}
62(y — D(y + HBy* + 9y — )i
0 2 V52 + 3y + 3) — 45(S + 1) — AT(T + D] + (=D 573" + 9y — 2)(S + H(T + P}
IBG - DO+ DY -G + G + DG + )3 + 9y — )it
{7+ Dy +2) — S + 1) = TT(T + 1)} [5(2T — 12T + 3]
0z 1 2ROy — DG + HGy + 9 — DI T+ 1)
{(Zy + 3Ty + 21y + 6) — 4S(S + 1) — BT(T + 1] }
02 ’ + (=1 Gy 4+ 9 - 2SS+ DRT+ 1D [(2T - DQT + 3):| H
123G — DG + D — DG + G + HG + HG* + 9y — I T+ 1)
{( + Dy +2) — T(T + 1) — 7SS + DI[5(2S — DS + 3)|+
20 1 1220y — DGy + DGy + 9y — DI SE+ 1)
{(Zy + )Ty + 21y + 6) — 4TT + 1) — 285(S + 1)] :
0 2 + (—=1)T3y: + 9y — )28 + DQRT + 1) |:(2S - DRSS+ 3):| H
123G — DG + DG — 2 + (5 + DG + G + 9y — I SE+1)

TABLE A6.3.
[y11] (221 || [y11]\

STy 5T ST; STz |l ST /

00 S8 0

20 1728 — D2S + Hy + D}

02 55 +3 I: 25 + DG — 1)

11 SS 0

00 SS—1 s

0 S—18§ ¥ Ry — Dy + 2}

20 s85—1 (y+2—2S')|: QS +3)(S+1) t
02 S—18 ¥ 3 1SS =Dy — Dy +2)
02 §S~—1 (y+2+25)[ QS —3)(S—1) ]*
0 S—18 + 3 2828 + Dy — Dy + 2
11 sS—1

11

S§—-18

0
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TABLE A6.4.
8§ 7, ST P [g;l] 24’;-'2’] [yll]
ST 1 {By + 2)(y +2) — 105(S + 1) — 10T(T + 1)}
43¢ - DY + H(y + 23y + DI
SS 2 _ 3@ + 2y + 4 + 42y — 11)S(S + 1)}
2[6(y — D(y — D@ + Dy + H(y + 5HGy + DI
ss-1 ., _ B + 26y +4) — 4@ + 1287
S—18 216G — DG — 20 + 2( + A + Gy + DIt
02 Ss 1 {(y +2)—48(S + 1)} I: 525 +3)(25-1) :l*
20 4 ISE+ Dy —Dy+HDy+3y + 1)
02 {y + 2)*3y — 13) — 82y — 11)S(S + 1)}
20 SS 2 7
x[ s + 325 -1) i
308(S + Dy — Dy — Dy + 2)(y + 4)_(y + 5@y + 1)

02 AR | 1 _{y+2+8S’+6S}[ 528 — 3¢S -1) %
20 S-18§ 4 3S@S + By - Ly + Hy+ 2@y + 1)
02 §$S—-1 2 _ {(y + 2)*By — 13) — 6S(3y% + 9y + 26) — 165*(y + 12)}[(2S5 — 3)(S — ni
20 S-18 4[30S2S + D - DY — 2y + 2@ + H@ + 5Cy + D}
02 S-18§ 1 _{y+2+8S’—6$} 525 +3)( S+ t
20 §SS-1 4 3ISQS - Dy —-DE+H0+2Cy + 1
02 SsS-—-18 2 _ {(y + 2)*(3y — 13) 4 65(3y* + 9y + 26) — 165%(y + 12)}[(25 + 3)(S + NP
20 §$S—-1 4BOSQS - DY —-DE - + 2y + Dy + 5)3y + L

TasLe A7.1. U([yy0l[1°1[yy0l(1); [fe®](fe>D).

[foo] Lol [0] [211]

y o+
wr-1o0 [l [
+ 47 ]
y+1y+11] ((yy+2) [Wy-rz}]
% " —20y(y + Al

TasLe A7.2. U(ly y — 1 0)[1*lly y — 1 0][1]; [f"21, [f*®]py,59).

o~ [o1 L11]p =1 [211] p =2

y—1y—10] y+1 =+ D2y +13) _[3¢ =Dy + 2@ + 4
8¢y +3) 3) By + DO + H@* + 12y — DI O+ 3@ + 12y —1)
_ _[30 =Dt 30-1 ¥ ¢+ +497t
lyy—20] 85+ 1) @+ 5)[8()' F DU+ 12y — 1)] - [(4yz T Y

[y+1y1}

(y+2)(y+4) $ _ (}’+2)(}’+4) b3 3(y—l) t
35 + D F 3 @& -1 [Z(y FDO + D@+ 135 = 1)] - [(y Ty T2y = 1)]

>3 n —[4y* + 12y — 1]t 0
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TasLe A7.3. U([yylI[C1yy11001; [f92), [f*®]p1,20).

N [0 R111p=1 2111 p=2

(0] _[y+2 b -2y =Dy + 1 _[3(y— Dy + D +H7¢
e 8y [8yy* + 12y — D} Y@y + 12y — 1)
[yy—11] _[(}V - Dy + 1)]* QCy + Dy - Dy + DI I: 3y +4) E
Y 2( + 2 By + 2@y + 12y — DI J@F +12 1)
3(y + 47 @y + DB + (¢ — DOy + D
[y+1y+12] [s(y ) BO +2@* + 12y — D - [W]
T, n —[y* + 12y — 11 0

TasLe A74. U([yl[1*]lyll1]; [fe21(fe)

S [fe]
lf [0] [211]

—100 _r - [30 +4¢
W ] |:4(y + 3)] [4(}7 +3)
3 + 471 y 1
111 _y
b+ 11l 4y +3) [4(y + 3)]
2% n —By(y + Ml

TasLe A7.5. U([yHIIyHI1LG [FO9], [f4]py,0).

o ] @11} p =1 RH]p =2

[+ _ -6 2(y — Dy + 47
[y10] [4@ ¥ 1)] 4G + DGy + OF O T DGy + 2)]
G+ O+ +7E G-+
by +122 G +3 y + 3Gy + 2):| ¥ +30y 12
b 111] [(y—n(y+2) t Gy +10)[y =11 8(y + 4) ]s
J 4G+ Dy +3) GG+ Dy + 3Gy + 21 O+ D0 +3Gy +2
)N n ~[y +2Cy + )1 0

TaBLE AT.6. U(lyy — 1y — 1112y y — 1y — 11[1]; [f*®], [f*®]p1,20)-

N [0 2111 p =1 2111 p =2

—_1y — +2 7t _ v +14) 8(y — D(y + 4) 7t
y—ty—1y-1] [:12(}' 3 (120 + 3Gy + 2B m]
0 +20 + 974 Gy = Dly + 41 8y —1) i
y+1yyl Ty +3) . dy(y + 3Gy + DI [y(y_+?)—(3y+2>
2y — D} 2 — Dy + )7 0+ + 9
yy—1y-12 I: [ G +3) TGy +2)

PN n =y + 206y + 21 0
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TasLe A7.7. U([y10][1°][y10][1]; [f=]1[f**1p4,23).

= L] (0] Ril]p=1 R11]1p =2

y + —(y = 11) 8(y — D(y + 4}
[y00] 'tz ] 137Gy + DB BT
[y — 110] [¢-D0 + Y =3y + 1Dy — 1t [ Ses 3
’ By +3) @0 + 906y + DI 5+ 0 T
20 + 47t 2y + D+ 7} G-+
b+12] [30 +3) [3(y + 303y + 7)] Ty +3Gy + 7)]
PN n =[(y + DGy + DR 0

TasLe A8.1. U([yy0l12]lyy0ll1z]; [Fo21f ).

oL [0 1] 2]

pripsin [EERES] gtz L)
y—1y—10 ﬁz——% i [%mm } 3(6142))
by +1y1 - 3‘(72%.%]} ‘[GTT)(y—rs)T v3

z, n, i + 2)By(y + HB 2y + D + 3 + 1

TABLE A8.2. U([yy0][2°1[yy0112]; {fU21{f®].

(2] LFeo] [0} {211] [422]

_ Wy —1) (o= +H7 (y+ Ny + 97}
yy—20] [‘10@ + D +2) 20 + DG + 2)] [S(y + Dy + 2)]
T 20+9 |t ¥ 30 - DGy + 97
y+1y1 [5—_—_(}1 F D0+ 3)} [(y +D0 + 3)] [sw + Dy + 3)
3+ Dy + 57 yy+35 b yo—-1n 7
[y +2y+22] [-—————w(y T 3)] [2@ + 20 +3) [m
o n —Hn — D[5p(y + P oYy — D + Ny +

TasLE A8.3. U([y00][1%][y00]{1%]; [f>][f*==']).

[fuz)] [f(“)] [0l [211]
y+110 y+4 [
g : o +2) [Z(y + 2)]
[y 11] [y 7 +49
Y I:z(y ¥ 2)] G+
pIN n, i — y)[y(y + 4k

8 With [y00] — [ypyl, for [f®8] = [211];Z, =31 +y + 4)
YO + DI :



TasLe A8.4. U([y00)[2°][y001(2]; [f“=1[f=D).

o (0] [211] (4221

by — 2000 _ yy-1n T [o-dp+97 20 + DG + 9|
IOU 10(y + 2(y + 3) G+ + 3 50+ 2@ +3)
1] [ ]i —(y+ 98 8y — Dy + 574
4 100y + 2) 6y + 2@ + R L5+ (G + 9.
3y + 57 yo+5 i yy—1 3
y+2221 50+ 30 + 90 + 9 [15( +0 F 4)]
Z, n- —s(n+y — HSy(y + 9] Yo — D@+ HQy + 5
TasLe A8.5. U([y y — 1 01[1%1ly y — 1 OJ[1%]; [f®], [f*®]p1,28)-*
23
] 0] [22] 2111 =1 211 p =2
Iy +1y0] (}' + 47 [(y - Dy + D __@y-Diy+ 41 [ 3y — Dy + 1) Y
yT by 3p(y + 2) R2y@y® + 12y — DI ¥ + 2@ + 12y — 1)
[y — 1y —20] —1) O+ +4 Qy + Dy — 1} _ 30 +D(y+ 9 :l*
Y=y 6(y F 3) 3G+ DG+ 3) 20 + 9@" + 12y — DI O T DO + @y 127 =D
[yyl] l —-Dy+4 =5 _ 2y + 3By — D)y + NP
i 120 + DG + 2) R@* +1zy — DR 2[ + DG + D@y + 12y — DI
b4 ly—11] [(y 1)(y+4) [(y+1)(y+2) i _[z 3¢ — Dy +49) ]* @y + Dy + Dy + )R
yr 1y 2y(y +3) 4y + 3) y(y + 3)@y® + 12y — 1) 2y + @y + 12y — DI

Sy = Dy + Dy +7
‘/3{@ v + x(4)}:” +12y — 1)}

20 — Dy + DG + @ + 9]
N n. 120 — DG + D& + 2D + ) @ T2y = DF __gl: G=DO+Dy+2¢+4

@+ 12y—1)

2 UQyy 12y 1N12]; [FORSED]p) = (—DP+1UQyy — 1 OJi12][y y — 1 O)[1%]; [F112)*][£(23)]p). The T, values arc the same as the above except for [211] p = 1 for which T, = {V3{(y + 1Ny + 22y + 3 + x(4y® +
12y — DI/IEY? + 12y — DL

v191
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TaBLE A8.6. Uy y — 1 0128y y — 1 0][2]; (O], [£2¥]p),s5)-

[/(l!)] [f(’,)]

{0}

RU]p=1

21]p=2

[4221p=1 14221 p=2

—1y—20] _[ ]* 2y + 1y — 1} 4y — 5 + 2}y + N}t Gy + 22)[y + 4} _ 20~ 2 + 20 + 9@ + 9
100y + 3) 6y + 34y + 12y — D} 3 + Dy + 3@ + 12y — D) 35(r + HGy* + 9y — 2N 300 +D0 + G + 9y —2)
Lyl —3V3 —2(y + 1Dy — D + 2} Gy + 22y — 1} _ B0 —= Do =20+ 2 +
‘/10 (24y* + 12y — D} 2y + DO + H@E + 12y — DR 25(py + 9(3»* + 9y — )i 20+ 1)y + H3Y* + 9y —2)
by —30] Fwdw—» —Qy + 9 — Dy — D gFu—mH4w+0i 2P+ M=+ 9k _[O+20+ D+ Ot
S+ 1) By(y + D@ + 12y — DI 3L Y 1y —1) N0y + DEYE+ 9y — )i 3yGyT+ 9y — 2)
+iy—11 —[0=DU+7 =Dy +4 i =@y + 1y + 32y + 1) —(9* + 17y — 56) =0 + D + Dy — 2 +
100y + 3) 20+ N+ 12y — 1) 23+ DG + @+ 12y — DR 250 + 93+ 9 — ) 2y + DO + 3@+ 9y — 2N
D+2y+12] 30+ 97t 2y — Dy + 5} _ 3y —-Dy+ 95 ]i = — DB — Dy + N _ 2y — Dy —2) ]
100y + 1) 20 + D@+ 12y — D O+DO+H@ + 12y — 1) BO+ DO+ 9B+ 95 — B C+IC I+ -2
—3V3 {(y — Dy + 32y — 1)}
z + x4y + 12y — 1) _30 =0+ DO+ 20 + a9y o _
* " 2B3@2F 12y — ]} [ 2(4},2 F12y—1n i‘[Z(}' l)(y + H(3y* 4 9y L 0
TaBLE A8.7. U(lyy1l1281yy11[2]; (£O21, [f*®]p1,24)-
[fan) 7= [0] [211]p =1 [211]1p =2 [422]p =1 422} p =2
D4+1y+11) _y+q* _ -3y +ai —@y + 17l — DG + DI Gy — 13y — 1} _N20 =10+ Do -2 + ]
10y [6¥(4y* + 12y — D} 3G+ 2)@* + 12y — DI} [45¥(3* + 9y — 2)Ii G +2)Cr+ 9 —2)
yy—10] L —3V3 @ = 9y + HO + Y Gy — Iy + 41 _[B30+ D0~ 20 + 90 + 9t
V1o 2@y ¥ 12y — Dp AG—DO+ 2@ + 12y — DR ASG — DG + 9 — D 20— DO+ 2GF* + 9 — 2)
+2y+23 [QED+9 @+ DO+ D+ 2[2r — D+ Do + 9 @+ =D +M [ O-=Do+Dr—2)
SO+ +3) B+ +3)@r+ 12y - D 3G FHEE+ 12y — D) 350 + (¢ + DG+ 9y — I 3+ + Yy —2)
y+1r2 —F@—”0+”*'5[ O=DGp+4 @+ + 1Dy + D —©* + 3Ty — 26) —(y — DIy — D + 2 +5)
100y +3) Y+ @+ 12y - 1) 2B3y(y + D& + KD + 12y — D] A5y + 3G + 9 — D 2 + DO + )G+ 9y — 2
[yy—21] 30—-2 =2y + Dy — 2} __[ 30—+ 4 1 =+ ABY — 2 + N [ 20+ Dy + 5) ]
100 + 2), G + 24y + 12y — DIt O—DO+ D@+ 12y — 1) (50 — DG + 23y 4 9y — 2 =D+ DGy* + 9y - 2)
_\/1—5{(}' - D2+ Ty +2) )
%, n_ + x(@y* + 12y — 1)

2[4y% + 12y — 1)}

_F0—00+n0+»0+®i
092+ 12y — 1)

—32(y — Dy + 93y* + 9y — 2R 0
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TasLe A8.8. U([y11][12)[y11][1%);

991, [f*®1py,0-*

[ { 28)]
[ fuz)]

[0 Ru]p=1 R11] p=2 [22]
My + 27 ) 4%y — I(y + 474 2[(y — D]}
[y00} [ [6yGy + 2B LT3y +2) 3[ y ]
[y —110] [0’" DO + 27 —( +6ly — 11 —(y — 2)ly + 4}t 0+
6y(y +3) 2y + 3Gy + 21 G + )Gy + D By + DB
Iy +121] 2y + 20 + 47 ~2yly + 41t —(y =Dy — 1}t TG =D+
Ly + Dy +3) Bo+ DO + )Gy + 2k 6 + DG + )Gy + 2 LG+ 1)(y F3)
_To—-1n7* - Dy +27¢ (y+2)(y +4) 1t o+t
b2 3y + 1)] [(y + DBy + 2)] [2@ + DBy + 2)] 6(y + 1)
s, B 20 + 9 + x@y + 03¢ + ¢ 6(y — D(y + 2(y + 4%

2 Gy + 2

Gy +2) 24 ~ DOy + 2

B UGy —1y—11%8yy — 1 y ~ 111%; [F12)), [f33)]) =

*QGy + DB + DGy + Mt

TasLe A8.9. U(yNI2°0y1112L; [f2], [fPlpy,e0)-

(— DA+ Uy 1120y 11(12); [F12)%), [£28)5). The X, values are the same as the above except for [211] p =1 for which £, = 3¢ + (¢ — D +

(Fun @] 0] R11]p =1 R11]p =2 [422)p = 1 22y =2
ly—110] [ =D+ 27t (& + 100y — 1] & —Dly+ 4 —(y — 1Dy + 4 S( — 20 + Dy + 5%
oG+ foy(y + 3)Gy + 2t By + 33y + Dt 1590y + 3Gy + D O+ 3IC+ 1
y—211] o — Dy —27 =0y + 10y — Dy ~ )F [ O=290+4 T? =@y + 1D2¢p — 2)(y + 1k 50+ 490+ 5) £
00y + 3) 630 + 30 + 206/ + )i 3+ N+ DCy + 2) 150G + 3 + 2)3y + DIt Y +3I0+26r+ 1)
221 -1 —( + 6)y — 11} _ 0P+ 4420 @+ 19+ 2) [ SO -2+ 9 H
50+ D B+ DO+ 23y + 2k [6(» + DG + D + )Gy + 2)1k (15 + DO + 2)(r + HGy + DI 6(}’ + DO+ 20 + NGy + 1)
y+121] _T4y+20 + 971 =20y — Yy + 41t Gy + 29y — 1} @y — 1Dy — 11t s =Ho -0+ 9
15( + Dy + 3) 3[(y + DG + 33y + 2B 32y + DO + HBy + 2B 3(5¢y + DO+ DBy + D 3 200+ DO+ 3@y + b,
y+233 SZ—*:E’-]* 175G + 20 + S 1110 — DO + D0 + 574 ~3[(y—1)(y+2)(y+5>]% 1720 = D = D0 + 2
3+ 3) IO+ N+ 3LO+H3G+ 93y +2) 3O+ IH+HEr+ D O+ +9Gy+ D
- 0o +2)
e " + xGy +2) [15(y + 274 10y ~ Dy + 2)( + 97t 0

2 Gr+2

3Gy +2)

_ [(y - D + 2y + H3y + 1)]*
3

8 If [y11]— [y y — 1 y — 1], the =, values are the same as above except for [211] p == 1 for which X, = —}2(y — Dy + xQy + D15¢y + /By + DR
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On the Renormalization of the Susceptibility of a Fermi Liquid
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(Received 10 February 1969)

It is shown that the susceptibility of a normal Fermi liquid can be renormalized without using Ward
identities for the derivatives of the mass operator with respect to the magnetic field. The procedure is
completely analogous to the renormalization of the compressibility. The result which expresses the
susceptibility in terms of Landau parameters is correct only to lowest order in temperature. The behavior

of higher-order terms in temperature is discussed.

1. INTRODUCTION

It has been shown by Nozitres and Luttinger! and
others?® that one can derive the results of the phe-
nomenological Landau theory* from a microscopic
theory. For this purpose one has to identify the follow-
ing in the microscopic theory: (1) the quasiparticle
energy,! and (2) the Landau parameters.!'3 The first is
identified as the real part of the pole of the single-
particle Green’s function. The second is taken to be
the limits of the vertex function multiplied by the
square of the renormalization constant,

When these identifications have been made, one
obtains the equation for the propagation of zero
sound® in the same form as in the phenomenological
theory. Furthermore, using Ward identities, one
obtains the equations for the effective mass of a
quasiparticle and the compressibility.!® If one defines
the Fermi momentum as the momentum at which the
quasiparticle energy vanishes, then one can also
shows® that the usual relation between particle number
and the volume of the Fermi sphere holds. This
result was extended by Dzyaloshinski’ to show that
the magnetic moment of the normal Fermi liquid is
proportional to the difference of the volumes of the
Fermi sphere for quasiparticles with spin up and the
one for quasiparticles with spin down.

In this work we show that the susceptibility of the
normal Fermi liquid can be renormalized in a micro-
scopic theory without using Ward identities for the

* Present address: Department of Physics, Brandeis University,
Waltham, Mass.
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derivatives of the mass operator with respect to the
magnetic field. This can be done provided the inter-
actions are spin-independent. In that case the number
of particles with each spin projection is conserved and
the Ward identity connecting the derivatives of the
mass operator with respect to frequency to the vertex
function holds, regardless of whether we use the
symmetric or antisymmetric part of the vertex func-
tion. See, e.g., Eq. (12) below. This is sufficient to
make the renormalization of the susceptibility identical
to that of the compressibility.
The result is as in Ref. 4:

* *
1="" 0 =AY =T 2+ FY, (D)
m m

where m is the mass of the fermion, m* the effective
mass, x° the Pauli susceptibility of a free gas, and A3
the angular average of the antisymmetric part of the
forward-scattering amplitude of two quasiparticles
on the Fermi surface. (We use here the notation of
Ref. 8 for the Landau parameters. In the notation of
Ref. 4, we have F¢ = ¢,.)

After proving this result, we show it to be correct
only to lowest order in temperature. However, the
only approximation made is in isolating the coherent
part of the particle-hole propagator. The error made
is of relative order 72 and so is the correction term in
the susceptibility.

2. BASIC FORMULAS

We treat a normal system of fermions using
the temperature-dependent Green’s-function formal-
ism.13-® The system is described by a single-particle
Green’s function G(1 — 1), where 1 = (r(, t;) and
t, € (0, —if). The Hamiltonian is assumed to be
spin-independent and to contain only two-body
forces. Thus, the only spin-dependent effects are due

8 D. J. Amit, J. W. Kane, and H. Wagner, Phys. Rev. Letters 19,
425 (1967); Phys. Rev. 175, 313 (1968).
? D. J. Amit, in Mathematical Methods in Solid State and Super-

[fluid Theory, R. C. Clark and G. H. Derrick, Eds. (Oliver and Boyd,

Edinburgh, 1969).
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to exchange. The assumption of spin independence
allows us to separate every two-particle (four-point)
function into its direct and exchange parts, i.e.,

Gaﬂyé(ll” 22’) = %[Glaayapo + GZGay * cpa]’ (2)

where «, f, y, 0 are spin indices and o are Pauli
matrices. The two-particle Green’s function is con-
ventionally defined as

Gypy(11', 22)) = —(Tp (D, (1932w (2D ()

The magnetic moment of the system in a weak mag-
netic field H is given by®

M = —polim {i [ 2 TIp OB QI
(o5 - H)
= —uﬁi[ f 4G (11", 22')|1,=2,+] %oy H),
@

where

—ip
fd‘l =str1f dtl; 1+ = (r19 tl + 0)9
0

and g, is the Bohr magneton.
Inserting in (4) the decomposition (2) of G, we find

M = —2,u3i|: f d2'Gy(11, 22')|l,=2,+] “H,

21t

)

which is the expected result that M is in the direction
of H. The susceptibility is, therefore,

= —2y§|:i f d2'G(11, 22')|1»=2'+} 6)
2:

Writing G, in momentum space in terms of particle—
hole variables, we define

=17

Gy(11',22%)
= (=i~ 2 Gup; 4,9
x exp {i[p(1 —2) + q(1 —2) + q'(1" — 2]}
7
where p- 1 =p -1, — pot; [we use O
P | d%
(BQ) ; =3 %j ) where %

is the sum over the discrete imaginary frequencies],
Q is the volume of the system, and f = (kzT)™.
Inserting in (6), we get

2i ~ tanot
1=~z 2Gig, )TN ()

(BQ)* ¢.a

10 A. A. Abrikosov and L. P. Gorkov, Zh. Eksp. Teor. Fiz. 79,
480 (1960) [Sov. Phys.—JETP 12, 337 (1961)].
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Gk is the “k limit”’% of Gy(p;q,q’). [We henceforth
drop the explicit exp (g,0" — ¢,0%), as it will not be
needed.]
The two-particle Green’s function is related to the
vertex part I' vial-®
Gaﬁy&(p; q, ql) = Rq(q, - q)(—iﬂg)ép,oanaﬁé
— Ry(P)(—iBCQ) - 04g0,s05y
+ iR(P)aya(P; 4> 4R (P). (9)

Ris simply the product of two Green’s functions,
namely

R(p) = G(9)G(g + p).
Using (2) and (9), we find

x = 2400 3R 1+ ()™ 3 i, 08y |
q [} .
= —2u;S%, (10)
where we defined S* by

St = (B0 SR 1+ (607 I e, IR |- (1)

Sk is the same as S, the static correlation function
of Ref. 1 after a spin decomposition. Finally, we note
that the compressibility K is given by!

K = _(NP)_IS,fa

where N = pQ is the number of particles.

3. WARD IDENTITY

The Ward identity relating the frequency derivative
of the mass operator M to the vertex part, Eq. (4.18)
of Ref. 1, can be derived from the conservation of the
number of particles in the system,™* together with the
assumption of two-body forces. Since it is the number
of particles of each spin species that is conserved, we
obtain®

oM — o Npe
MD _ _(p0y* 3T, )RS, i=1,2. (12)
aqo a’
In particular, setting ¢ on the Fermi surface we obtain
=1 OM(k z.w)
aw =0

=1+ @Y7 2T?m )R, i=12. (13)

In other words, the renormalization constant is given
by the same expression, whether we use I'; or I, .-
Finally, we make use of the identity

yr[-50 =

11§, R, Schrieffer, Theory of Superconductivity (W. A. Benjamin,
Inc., New York, 1964).

(14)
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[see Eq. (5.16) of Ref. 1]. Together with Eq. (12) this
leads to

3 R::’[l + GO ITIG, q')R:f] —0. (15

4. LOW-MOMENTUM TRANSFER BEHAVIOR

We turn now to the low-momentum transfer
behavior of the quantities involved. We have?

— Pab 1+ 0w D) (16)

Re is the “w limit”® of R, a, is the renormalization
constant, and

8, = (1/vm)d(lgl — kx)des.05 (17

where vy = kg/m* is the quasiparticle velocity. This
relation can be proved to all orders in perturbation
theory at T = 0,2 and at finite T it can be checked in
low-order diagrams or in an RPA calculation.

Furthermore, using the renormalized Bethe-Sal-
peter equation at low-momentum transfer, which is
called Landau’s equation, one finds,®? for i = 1, 2,
that

(g, q) — TH4a, 4"
= GIN*(0) f 4 g, )Mo’ ¢'), (18)

Ri= R

where the appearance of the unit vector n” in I’
indicates q" = n"ky, g; = 0, i.c., the four-momentum
is set on the Fermi surface, N*(0) = m*ky/2=% The
integral in Eq. (18) is over the unit sphere. Equation
(18) has again corrections of relative order (8u)7%,
since Eq. (16) is used in deriving it.

From Eq. (18), we have

(Y™ 3 {T7(q, ¢)RY — T'(g, 4Ry

+ I'ila, )Re — R)}

= aIN*(0) f A g, w [(ﬂﬂ)-l S e, q')R::f].

In the last term of the left-hand side, we insert Eq.
(16), and the term in brackets on the right-hand side
is expressed in terms of the renormalization constant
by using Eq. (13). Thus, we arrive at

Z[F"’(q, 9)RZ — I'i(g, 4)RE]

QY
— a,N*(0) f 2 rig ), (19)

and this equation, again, holds for both i = 1 and 2.

12 J, M. Luttinger, Phys. Rev. 121, 942 (1961).
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Setting (19) on the Fermi surface and using (13) gives
(B~ 3 T'i(n, ¢)RS,
i
= (a* — 1) = a,N*(©) f X riw ). o)
s

5. THE RENORMALIZATION OF S%
Using (16) and (19), we can write S* as

St = (B 3 (RS — alh)
x [1+ 607 37 R

~ (6 e, N O3 f %R’:Pﬂq, o). Q1)

Next we use (15) and (13) to rewrite it as

SE= —a,N*(O)[l + f —(ﬁQ)-lsz(n q)R:I
(22)

where in the last term we used the fact that ['*(q, ¢') is
symmetric in g and ¢’. Finally, we insert (20) in (22) to
find

Sk = —N*(0) + [a,N*O)P f 4 o, ). (23)

At T = 0, the second term reduces to N*(0)4% when
i = 1, where 43 is the angular average of the symmetric
part of the scattering amplitude, and to N*(0)43 when
i = 2; thus,
S;(T =0) = —N*(O)[1 — 45°]
= —N*O)[1 + F§*1.

6. THE COMPRESSIBILITY AND
SUSCEPTIBILITY

From (24) and the expression for K and x, we obtain
Landau’s results, i.e.,

= (Np)'N*(0)(1 — 45),
2 = 2uN*0)(1 — 43

(24)

(25)
(26)
at T =0.

In Eq. (22), I'¥ is temperature-dependent, but it is
easy to convince oneself that the equation gives only
the T = 0 term correctly. In order to see this it is
enough to look at the system of noninteracting
fermions. In this case

st = [ L8,

where ' is the derivative of the Fermi distribution
function and €} = (g% — k%)2m. At T = 0,

SHY = —N(0) = —mkg/[2n"
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If in Eq. (24) we set 432 =0, m* = m, which
corresponds to the case of the noninteracting system,
we obtain the T = 0 result.

The difference, clearly, comes from the approxi-
mation made in Eq. (16). This equation introduces
errors of relative order T?% in Eq. (19) and finally in
Eq. (21). As is suggested by the comparison with
the noninteracting system, Eq. (16) becomes exact
at T = 0.° This is the form in which it was used in
Ref. 8.

The correction to the zero-temperature suscepti-

J. AMIT

bility has been calculated through the paramaghon
approximation.!® It was found to behave like T2, and
by using the approximate expression for the free
energy the coefficient was explicitly calculated.
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The theory of stochastic motion is formulated from a new point of view. It is shown that the funda-
mental equations of the theory reduce to Schrodinger’s equation for specific values of certain parameters.
A generalized Fokker-Planck—Kolmogorov equation is obtained; with other values of the parameters,
certain approximations reduce this to the Smoluchowski equation for Brownian movement. In particular,
the potential function in the Schrodinger equation differs in the two cases. The usual uncertainty relations
appear in a natural way in the theory, but in a broader context. A single theory thus covers both simi-
larities and differences between quantum-mechanical and Brownian motion. Furthermore, possibilities
for broadening nonrelativistic quantum mechanics are brought out and, as an example, the possible
corrections due to non-Markoffian terms are briefly studied.

I. INTRODUCTION

In this paper we are concerned once more with the
possibility of giving a stochastic foundation to
quantum mechanics. In this sense it continues a series
of earlier papers,!~® although the problem is here
approached from a new point of view and in a much
more general form.

The basic idea is developed as follows: In the first
place we construct a new formulation of stochastic
theory (Sec. II) using two guiding principles, namely,
that the theory must be an extension of Newtonian
mechanics and that the velocities and the forces must
transform according to certain rules with respect to
time-inversion. These rules are indeed sufficient to
establish the two fundamental differential equations
of the theory, which, in a particular but interesting
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case, reduce to the set first given by Nelson. Once the
theory is constructed, we show without further
physical assumptions that Schrédinger’s equation is
a first integral of our fundamental stochastic equations
(Sec. III). In fact, the equation we obtain is more
general than Schrodinger’s, which is obtained by
fixing certain parameters of the theory. In this form
we see that it is possible to reinterpret quantum-
mechanics as a stochastic process. Then we turn back
to our basic set of equations and show that their first
integrals may be written alternatively as a continuity
and an energy-conservation equation (Sec. IV). The
first of these may be cast into the form of a generalized
Fokker-Planck-Kolmogorov equation of the type
discussed by Pawula® and gives, as we show, the
Smoluchowski equation® for Brownian motion if
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some approximations, equivalent to the transition to
the static limit, are made. In this latter case, a param-
eter A which characterizes the interaction of the
particle with its surroundings takes a value different
from that needed in the quantum-mechanical case.
This interaction parameter appears in an unusual
energy term in our generalized Schrédinger equation;
hence, the difference in the values it takes are of
fundamental importance: if it is unity, the classical
quantum-mechanical case is obtained, while a value
different from unity gives rise to the equations of
Brownian motion and adds a new term to Schro-
dinger’s equation. This means that, although in our
theory there is an interaction of the particle with its
surroundings, postulated from the beginning, this
interaction remains hidden in the quantum-mechan-
ical case but gives rise to a dissipative term in the
Brownian case. In this way the stochastic theory here
presented allows us to state explicitly the common
aspects of quantum mechanics and Brownian motion,
making possible at the same time to state the great
differences between these two different physical
situations.

In deriving Schrodinger’s equation from the general
theory we truncate a priori a Taylor-series develop-
ment to second order, which is equivalent to consider-
ing that the interaction of the particle with its
surroundings is Markoffian. To see more clearly the
possible consequences of this last hypothesis, we
return to the question in Sec. V, in which it is shown
that the higher-order terms previously disregarded
give rise to a perturbing potential. In particular, it is
shown that the fourth-order term in the Taylor
development gives, if it is not zero and satisfies
certain simplifying assumptions, a correction to the
energy levels of a stationary system which has the
same form as the dominant radiative corrections in
quantum-electrodynamics responsible for the Lamb
shift in the hydrogenlike atom, i.e., 0E ~ (VZF).
This calculation is straightforward but only qualita-
tive, the final result being expressed in terms of an
at present unknown parameter. In this form, we
cannot reach at present any final answer to the
question of the legitimacy or illegitimacy of our
truncating the Taylor expansion to second order, but
we hope that an extension of the present work which
is in course may be of value in getting more definitive
results about this point.

Some results of this paper were obtained previously
along different lines of thought,»~* but it seems to us
that the method here set forth is more direct and that
the physical content of the theory is clearer, the
formulation being more general and enlightening.
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For a discussion of some related topics, as for example
the introduction of the usual operators into the theory,
which are barely touched upon in this paper, the
interested reader may refer to the literature.?3

II. THE FUNDAMENTAL EQUATIONS OF
THE STOCHASTIC THEORY

The scope of this section is to derive from first
principles the equations of motion of a classical
particle subject simultaneously to the action of an
external and a stochastic force, this last being gener-
ated by the interaction of the particle with the
medium through which it moves. We assume that the
velocity ¢ of the particle may be written as the sum
of a systematic or current velocity v and a stochastic
component ut:

)

Let us introduce the time-reversal operation which
consists in the transformation x —x, t— —¢; in
other words, in the change of the direction of the
time axis. We shall denote it by 7" and write for short
Tf = f, f being any quantity on which T acts. The
effect of T on f'is to replace ¢ by —¢ everywhere in f.
In classical as well as in quantum mechanics, the
transformation properties under T of the kinematic
and dynamic variables are usually inferred from their
definition; for example, the velocity of a classical
particle, being the limit of Ax/Ar as At—0 is sup-
posed to reverse its sign under 7. We here also impose
upon the velocities v and u a well-defined behavior
under time reversal and, in particular, we assume
that they transform under T as follows:

c=v+4u

= —V,

-t

@)

In the limit when the stochastic force goes to zero
(in what follows called the Newtonian limit) we want
to recover Newtonian mechanics; this establishes the
first of Eqs. (2). On the other hand, the transforma-
tion property of u implies that in the Newtonian limit
u = 0 necessarily, because in this limit we must have
€ = —c. Equations (2) imply that the velocities v
and u are essentially different variables, v being the
velocity in Newtonian mechanics but u having no
classical analog. We have from (1) and (2) that

u= +u

E=—v+u 3)
and so

V= %(C - E)’

u=j(c+9. )

In classical mechanics, the velocity v and the posi-
tion coordinate x of a particle are linearly related
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through the total time-derivative operator:
v = (dfds)x.

In order to get a similar relationship in our more
general scheme, it is necessary to investigate which
operator, if any, may be used in place of d/dt to relate
X (now a stochastic process) with ¢ = v + u. Clearly,
a relation of the above type will have meaning only
in the mean, due to the stochastic nature of the motion
which we are assuming. To investigate this question,
let us assume on physical grounds that there exists a
distribution of the changes in the space coordinate
dx = x(¢t + Ar) — x(¢) which occurs in a small time
interval Az, this distribution being such that its
moments in éx divided by Ar all remain finite in the
limit Az — 0. In this paper we shall adhere to the
following convention: when we take the average of a
quantity over the probability density of dx(Ar), we
shall write this average as E{ } and call it for short
the mean or the mean value; on the other hand, if the
average is taken over an ensemble of equivalent
particles to be introduced later on, we shall call it the
average or the average value and write ( ),,. The
mean, in this restricted sense, is thus the conditional
expectation in the interval Az.* Now let us introduce
any sufficiently smooth function of x and ¢, say
S (x, t), and suppose that it admits a development in a
Taylor series about the point x, ¢; let At be a small
positive time interval. Then we can write, letting x;
be the components of x,

Ait [F(t + A, t + Aty — F(x(0), )]

[;+ S (%t + A1) — x(010,

+ 5& g [x(t + At) — x,(1)]
XMﬁ+A0—MMM%+“}ﬂﬂa&

Taking the mean of the above expression and passing
to the limit Az — 0, we obtain

Df(x, 1) = 2310 A_l—t E{f(x(t + A1), t + A1) — f(x(1), D)}

= l:% + > o + > D00, + - ']f(x’ ).
i i,7

&)

Here ¢;,2D,;, -+ + stand for the limits of the first-
second-, - order moments of the distribution
divided by A¢, and we are identifying ¢, with the com-
ponents of the previously introduced velocity ¢. For
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a more detailed mathematical discussion of topics
related to ours, the reader is referred to Refs. 4, 6, 7
and references cited therein. In what follows we
assume for simplicity that the matrix whose elements
are D,; as defined in Eq. (5), is diagonal. Hence we
write the above result in the form:
Df = —f+c VUf+ DV 4 - )
Clearly, in the Newtonian limit when D and all
higher-order coefficients vanish, Df reduces to the
usual total time-derivative of f. Also from (6) we have
that

(TD)f = ﬂ3f= - Z—{+ EVf+ DVt . (D

If we call D the (mean) forward derivative operator,

then D represents the negative of the (mean) back-
ward derivative operator; for in the Newtonian limit

ﬂ~)f goes to minus the total time derivative, as follows
from (2) and (7). According to (6) and (7), these
operators are

S eV DV
ot

ﬂ~)=—53;+5-V+EV2+-- (8
Applying (8) to x;, one gets
:Dx,; = Cy,
Dx, = ¢,. ©9)

This result shows that the operators D and D may
in fact be considered as the sought-for generalization
of the total time-derivative in classical mechanics,
in the sense that with their help we can construct
the velocities from the position coordinates. Now
using (4) we immediately get

v=§D — D)x = Dx,
u=34® + D)x = Dx, (10)

where we have introduced the systematic (or current)
derivative operator

D, =D - D) (11a)
and the stochastic derivative operator
D, = 3D + D). (11b)
With the help of (4) and (8), Eqs. (11) become
506=2+v-v— D VE4g .-,
ot
D,=u-V+D VP4 -, (12)

? Ming Chen Wang and G. E. Uhlenbeck, Rev. Mod. Phys. 17,
323 (1945). Reprinted in the same book as Ref. 6.
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where
D+ = %(b + D)s
D_= 3D — D). a13)

Note that in the Newtonian limit, D, acting on any
function of x and ¢ gives zero, which we simply write
as D, = 0; on the other side, in the same limit D,
goes into 9/0t + v+ V = d/dt.

Since we want to construct a dynamical theory, we
must consider forces in the scheme, which we shall
always write per unit mass (p.u.m.) for simplicity.
In classical mechanics there is a direct relation between
forces and acceleration which we want to extend into
the theory. With this aim, we introduce the quantity

(14)

i.e., the forward derivative of the velocity ¢; with the
aid of (1) and (11) we can rewrite (14) in the form

a=Dv+ Du+ Du+ D,yv. (15)

a = De,

In the Newtonian limit, (15) reduces to
a = Dy = dv/dt,

i.e., the acceleration of the particle, which, according
to Newton’s second law, is equal to the total force
acting on the particle. This suggests that we can give
to Eq. (15) a dynamical content if we put a =f, f
being the (mean) total force (p.u.m.) acting on the
particle. Let us consider at this stage only T-invariant
forces, e.g., forces which do not depend on the
velocities; then we may assume that a is also invariant
under 7. However, a as defined in (14) and (15) is
not T-invariant. In fact, since

D, = }D - D) = —D,,
D, = 4D + D) =9D,,
it follows that
a=Dyv+ Du—Du—D,yv. (16)

Therefore, if we want a to be T-invariant, i.e.,
a = &, then a comparison of Eqgs. (15) and (16) leads
us to the following postulates:

Dy + Du=a,
Dau + Dy =0.

(17a)
(17b)
Let us now introduce our dynamical postulate:

the total force (p.u.m.) acting on the particle is equal

to the total acceleration given by Eq. (17a), i.e.,
f=a.

(18)

This postulate guarantees that the system of Egs.
(17) and (18) represents a generalization of Newtonian

1623

mechanics, Egs. (18) and (17a) being the form that
the second law takes in the presence of stochastic
forces. Equation (17b) is trivially satisfied in the
Newtonian limit (when u and D, are both zero).

For brevity, let us write

a=a,+ a,, 19
where
a,=Dv=Dx=a,
a=Du=Dx=4a, (20)

the second pair of equalities following from (10) and
the last one from (2) and (11).

Thus, a, is the acceleration associated with the
systematic rate of change of the current velocity,
whereas a, is the acceleration associated with the
mean stochastic rate of change of the stochastic
velocity. Also, from (17b) we see that the systematic
changes of u are always compensated by the changes
impressed by the stochastic motion on v. In this
sense, this equation is a kind of action-reaction law.

Explicitly the T-invariant form of a reads

a = }(Dc + D) = }(D? + DIx. (21)
Also,
a, = }(D — Dyx,
a, =} + Dy, (22)

and finally, from (17b), we get
DD, + D,D)x = LD — D)x = 0.

Now we introduce a last postulate into the theory
in order to express the basic equations in terms of the
applied external force (p.u.m.) f,. In general, we may
expect the external force to be the fundamental cause
of the changes of the systematic motion, although as
we have seen the stochastic force may also contribute
to them. This means that we may consider the total
force f, as a superposition of the external force and a
component of stochastic origin. Since, on the other
hand, the mean total force is given by a linear combi-
nation of a, and a,, we may consider that the four
quantities a,, a,, f, and f, are linearly related. Hence,
we write

fo = La, + Asa,.

This equation together with f = a, + a, allows us to
write f as a linear combination of f, and, say, a,,
according to the preceding discussion. From space-
and time-translation invariance we conclude that 4,
and 4, must be constants. Furthermore, we require
that in the Newtonian limit, i.e., when a,— 0, we
have f, = a,, and thus 1, = 1. Finally, writing —4
instead of 2,, we arrive at the following result:

fo =a, — ia,.

(23)
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Equation (23) must be considered as a postulate. In
it, A is left as a parameter of the theory (later on we
shall find its value for some cases of interest). Com-
bining (18), (19), and (23), we get that

f=f,+ (1 + Ma,, (24)

where f is given by (17a). In other words, we have as
our fundamental equations the following system:

fo = chV - }.‘Dall,

Du+ Dy =0, (25)
which, when written out explicitly with the help of
Egs. (12), takes the form

a—Y+(v-V)v—

D_ Vi — A(u-U)pr
ot

—}»D_'_ 2ll+"'=f0,

%‘+(v-V)u+(u-V)v+ D V¥

— D Va4 =0. (26

Equations (26), which are a generalization of the
system given in earlier papers®*® and also of that
proposed by Nelson,* describe the motion of a particle
subject simultaneously to the action of a T-invariant
external force f, and a stochastic force generated by
the interaction of the particle with its surroundings,
under the assumptions that the velocity may be written
as the sum v + u of a systematic and a stochastic
component, each transforming under T according to
Eq. (2), and that the external force f; is related to the
total force f as in Eq. (24) with constant 4.

Since the two velocities v and u satisfy a system of
coupled equations, they are not independent, the
stochastic and systematic motions influencing one
another in a complex way. Due to this fact, we may
expect that the motion of a particle satisfying Eqs.
(26) differs fundamentally from the corresponding
Newtonian case. Clearly, in the Newtonian limit
when D, = D_ = 0, etc., the second equation in (26)
has the trivial solution u = 0 and then the first one of
these equations reduces to Newton’s second law
dvldt = f,.

Actually the system (26) is more general than
needed for our later purposes. Thus in what follows
we reduce ourselves to a more particular situation.
We shall, in fact, assume first that the coefficients
D,, D_, etc., depend only on time; secondly, that
the velocities ¢ and € and in consequence v and u are
irrotational; and, finally, that the external force may
be obtained from a potential ¥. With these assump-
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tions, we can write Egs. (26) in the form

%‘;+V[§v2— DV .v— }?
— ADN u] + -+ = =VV,
%‘+V[v-u+ DN:.v—DV-.u]l+:---=0 (27

This is the system that we use as our basis throughout
the remainder of the paper.

III. THE SCHRODINGER EQUATION

We will now attempt to show the physical meaning
of Egs. (27) in more usual terms by deriving a
Schrodinger equation from them. An alternative and
complementary way of tackling the problem appears
in the next section.

Equations (27) are a system of coupled nonlinear
differential equations. However, for several important
cases a first integral may be written which uncouples
and linearizes them; the conditions for this case are
given later on. Starting from the postulated irrota-
tional character of v and u, we may write

v = 2D,VS,
u= 2DOV.R.

(28a)
(28b)

Here R = R(x,t) and S = S(x, ?) are dimension-
less real functions of x and ¢ and Dy is a constant
which may be specified by writing

D, = Dyn,,

D_ = Don_, (29)

where 7, and #_ are real dimensionless functions of
time. When D, does not depend on time, it is clear
that we may take 9, =1, i.e., D, = D,.

In this and the next sections we restrict ourselves
to a special case of Eqs. (27), namely, that which is
obtained by putting all the coefficients of the terms of
order > 2 in the series (12) equal to zero, i.e., by
assuming that, for Az — 0, only the first and second
moments become proportional to Az, This point will
be commented on in later sections.

With these restrictions we introduce (28) into (27)
and integrate to obtain

2D, %f = —V + 2D3[5_V3S — (VS)?
+ i, V3R + A(VR)Y, (302)
2DOZ—’: = 2D¥yn_V2R — 2VR - VS — ,VS], (30b)

where the “constants” of integration (which may
depend on time) are taken as zero, since they may be
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absorbed into R and S. Introduce now a complex
function y given by!

y = exp (R + iS).
Then we can write, from Eqs. (30) and (31),

@31

2iD(,1p—1-aaif
o0R 0S
=2D{i— — —
°(l o1 at)

= 2D[—i(n, — in_)V?S + (VS)* — 2iVR . VS
— (An, — in VR — A(VRY*] + V.
From (31) it follows that
p 1V = V2R + (VR)2 — (VS)?
+ i[V3S + 2VR . VS],

which may be used to eliminate, say, (VS)? from the
previous result. We obtain

2iDoaa-Z) = —2DiViy + Vy
— 2D, — 1 — in)yViiny
— 2D§(A — DI(VR)* + 7, V*Rly,
where V2In ¢ = V2R 4 iV2S. We can now make use
of (31) and its complex conjugate (c.c.) to write the
derivatives of R in terms of ¢ and »* as follows:

(VR + 7, V'R = H(y'Vy + ¢* ' Vy*)?
+ I,V - (y7'Vy + p* V)
= (2D5)"'(3u’® + D,V -w),
where u is to be taken as depending on y and *.
The result is

2iD.,%'—f = 2DV + (V + Vo + V)y, (32)
with
Vo= —2Din, — 1 —in)V:Iny,
Vg = —(A — 1)(3u® + D,V -u). (33)

Equation (32) and its complex conjugate are a
first integral of the fundamental system of stochastic
equations (27) expressed in terms of the function y
and coincide in fact with Schrédinger’s equation and
its c.c. for a potential (p.um.) Vp =V + Vo + V.
This equation and its c.c. are coupled through V;
and are nonlinear due to both V and ¥¢;. Thus, to
get alinear theory, we must require that Vg = ¥, =0,
which, at the same time, uncouples Schrédinger’s
equation from its complex conjugate. From (29) and
(33) we see that the condition Vy = 0 implies that
7. =1 and #_ =0, and hence that D, = D, =
const and D_ = 0; also, the condition Vy; =0
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implies A = 1. With these values of D, D_, and 4,
Eq. (32) reduces to Schrodinger’s equation in its usual
form:

2iD, aa—f = =2DViy + Vy,

where V is the potential associated with the external
force f,.

It may be useful to state explicitly what we are
implying from the standpoint of the present theory
when we write Schrodinger’s equation in its usual
form. We have just seen that in this case, we need
D, = Dy = const (and moreover = ki[2m), D_ = 0,
i.e., D =D and 4 = 1. Under these conditions we
know that in the Newtonian limit when D = Dy — 0
(i.e., A— 0 or m — oo but with mV finite) the particle
undergoes a classical motion; for D s 0 the motion
of the particle does not follow Newton’s Laws any
more due to its stochastic nature, but is governed
by the more general equations

QMU —V[V —ut— —’?—v.u], (34a)
ot 2m

a—“+V[v-u+—}2-V-v:| =0,
ot 2m

or, what is equivalent but simpler from the mathemat-
ical point of view, by the usual Schrédinger equation.
A short digression seems justified here in order to
clear up certain points. If, following some authors,3-?
we look at Eq. (34a) from a Newtonian point of view
taking v as the particle’s velocity, we could say that
the motion arises from two effective forces, the first
due to the external potential f, = —VV and the
second being

a,=Du= v[%u2 + —h—v.u}
2m

(34b)

which may be associated with the “potential” ¢p
given by

bp=—pu = V.0
2m

_ _(i)z[v_zp 1% ]

2m) | p 2( P) ’

where p = exp 2R = p*y. ¢p is just the “quantum-
mechanical potential”® or Bohm’s potential® and
appears in Eq. (30a) added to V to give what was
considered “an effective potential.” ® This point of

view does not seem very convincing from the stand-
point of the present theory, for firstly, the particle’s

(34¢)

8 D. Bohm, Phys. Rev. 85, 166 (1952).
® R. J. Harvey, Phys. Rev. 152, 1115 (1966).
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velocity is not v but ¢ = v 4+ u and, secondly, it is
possible to demonstrate (cf. Sec. IV) that in fact
¢p measures, in the average, the contribution of the
stochastic velocity u to the total average kinetic energy.
Furthermore, from (24) it follows that the total mean
force is given in this case by f = f, + 2a,, i.c., the
mean force generated by the interaction of the particle
with the vacuum is given by 2a, and not by a,, while
¢p is associated with the latter. Hence, if we want to
show explicitly the effective forces acting on the
particle, we must rewrite Eqs. (34a) and (34b) in the
following more symmetrical form:

Z—Vt + VOA + ) + DV u] = —V(V + 245),

Qu—+V[v-u+ DV .-v]=0.
ot
It should be stressed that the theory developed up

to this point does not give the value of D nor of the
higher-order coefficients. For this we need a deeper
understanding of the nature of the interaction between
the quantum particle and the vacuum. The present
theory is based only on the assumption that such an
interaction exists and has a stochastic character.
Thus, that D is a constant such that D = D and has
the value 7/2m must be understood, presently, as an
empirical result. An interesting attempt to understand
theoretically this value has been given recently by
de Broglie.1®

IV. THE CONTINUITY AND ENERGY
EQUATIONS. BROWNIAN MOTION

As mentioned, Eqgs. (27) or rather their first integral
equations (30), may be interpreted from the point of
view of habitual stochastic theory by deriving from
them a relation of the Fokker—Planck®? type. For this
purpose, let us rewrite (30) as

2Doaa—f = —V 4+ Dy _V.v— }¥
+ AD,V - u + 32u?, (35a)
oR

ZDOE =Dm V-u—veu— D, V-v. (35b)

The probability density p needed for our purpose is
defined as before:

p=eF=yp*p (36)
With this definition, usual in quantum mechanics,
(28b) gives

Vp

u=V(D,ln p) = Dy L. (37)
P

107.. de Broglie, C. R. Acad. Sci. 264B, 1041 (1967).
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This is just the formula found by Einstein for the
osmotic velocity in his elementary theory of Brownian
motion.!! Using (37), (35b) becomes
ap

5 TV - DV

- —p[non_(‘zpf)z +0 =0V -v] )

In the previous section we showed that ordinary
quantum mechanics corresponds to setting 5, =1,
7_ = 0. With these values, (38) reduces to the well-
known continuity equation

dp
— 4+ Vevp=0.
ot Vv

Here, as is to be expected, Eqs. (28) and (31) show that
vp = —iDg[y*Vy — yVy*].

We may therefore reasonably consider (38) as the
continuity equation for p, whatever the value of
n.(t); this justifies the identification of p with the
probability density for the ensemble underlying the
theory. This ensemble may be defined as formed of
all particles for which the mean value (in the restricted
sense defined above) of the velocity and the energy
(whose determination is discussed below) is the same.
Equation (38) shows that any deviation of %, and 7_
(and hence of D, and D_) from their usual quantum-
mechanical values implies the presence of sources for
p which depend on p itself. It is possible to rewrite Eq.
(38) in a slightly different form which corresponds
more closely to that encountered in the theory of
stochastic processes. For this purpose, let us introduce
the relation v = ¢ — u and use (37) once more to get,
after minor rearrangements,

a—P+V-cP— DV%

ot
oo o]
_ Zn_pI}V ¢ — DYV .Z’-’], (39)
p

where 7 = D/Dy and D= D, — D_, from (13).
As before, for D, = D,, D_ = 0, Eq. (39) becomes
linear and source-free:
op
—_ = ——V +C sz N
2 p+ DV'p
Equation (40) is the Fokker-Planck equation of our
problem in configuration space or, better, it is a

(40)

11 A. Einstein, The Theory of the Brownian Movement, R. Fiirth,
Ed. (Dover Publications, Inc., New York, 1956).
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particular case of a generalized Fokker-Planck~
Kolmogorov equation of the type discussed by
Pawula,® with ¢ and D proportional to the first and
second moments of the distribution in Jx, respec-
tively, and the ratio of all other moments to At
vanishing in the limit A¢ — 0. From it, we see that D
plays the role of the diffusion coefficient. It is now
clear that truncating the Taylor series, as was done
above, is equivalent to stating a priori that all moments
of order greater than two are of order (Ar)* with
k > 1, so that in the limit Az — 0 the ratio of these
moments to At vanish. This would appear to mean
that the process is Markoffian, since for this type the
higher coefficients do, indeed, vanish. It seems to us
that this is a strong assumption that certainly requires
experimental confirmation before being accepted.

Equation (40) corresponds simultaneously to ordi-
nary quantum mechanics (it is an equivalent form of
the continuity equation) and to the theory of Markoff
processes in configuration space. From this point of
view we have demonstrated that the usual quantum
mechanics corresponds to a Markoff process.’* Had
we conserved higher terms in (27), Eq. (40) would
become an equation with higher derivatives and the
process would cease to be Markoffian; in this case,
Schrodinger’s equation would also contain higher
derivatives, which, in turn, would imply a generaliza-
tion of quantum mechanics to processes Wwith
“memory.” Some qualitative comments about these
questions are dealt with in next section.

If we are interested only in the asymptotic solu-
tions of Eq. (40) for ¢ — oo, we can greatly simplify
things and recover the well-known Smoluchowski
equation.® To see this, let us proceed first along the
usual lines in the elementary theory of Brownian
motion. Suppose that the particle moves in a medium
which exerts on it a viscous force —mpfc and a
stochastic force of molecular origin A(¢), with A(¢)
varying much more rapidly than c. Then we may write
the Langevin equation for the particle®’:

m%i;+mﬁc=K+A(t),

where K is the external force. In the case Sz > 1 the
acceleration is so small that we can pass with enough
accuracy to the static limit dec/dt = 0, which means
that we can write instead of ¢ in Eq. (40) its approxi-
mate value K/mg, because in the small time interval
At, ¢ and K may be considered constant, but

E{A(t)} = 0.

12 For a direct demonstration, see L. de la Pefia-Auerbach and
A. M. Cetto, University of Mexico preprint (to be published).
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Making use of this, Eq. (40) reduces to
dp

ot

which is precisely Smoluchowski’s equation. Let us
now look at this approximation in terms of our
previous language, avoiding the use of Langevin’s
equation. The approximation consists in assuming
that the total acceleration a is negligible, or, according
to (18) and (24), that

f, + (1 + N)a, = 0.

. .E e+ szp,
mf

@41

However, since f, and a, are linearly independent and
a, is not zero, (41) can be satisfied only if f, = 0 and
A = —1 simultaneously. Furthermore, since both
forces K and —mpe act on the particle, we have
mf, = K — mfe. In other words, the static approxi-
mation is achieved by setting

¢ = K/mp
and
A= -1 (42)

Thus we see that for 873> 1, Eq. (40) goes into
Smoluchowski’s equation. But we have also learned
that for the Einstein-Smoluchowski treatment of
Brownian motion we must set A = —1, a value of 4
which is different from its quantum-mechanical
value; this implies that ¥y in the Schrédinger equa-
tion for this problem is different from zero. In fact,
for the free Brownian particle D, = D is a constant
which we can put equal to Dy and D_ = 0 and hence
Eq. (32) takes the form

2iooaa—~'f = —2D*V?y + 2[4u* 4+ DV -uly. (43)

Equation (43), i.e., the Schrodinger equation for
free Brownian motion in the Smoluchowski approxi-
mation, is nonlinear and, in general, more difficult to
solve than the corresponding linear Smoluchowski
(diffusion) equation. We see that, from this point
of view, the free Brownian particle moves under the
action of the “potential” V¢, proportional to ¢5. The
different values that the parameter 2 takes in the two
cases we have discussed, the quantum-mechanical one
and the free Brownian motion in the Einstein—
Smoluchowski approximation, point up the essenti-
ally different nature of the particle’s interaction with
its surroundings in the two cases, this interaction
being frictionless in the first but dissipative in the
second problem.

Let us now consider Eq. (35a). First note that if p
vanishes at infinity, then the average of ¥ . u may be
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written

: v
DY - )y = Dﬁf V. ~Lax
p

2
= —03[p(%2) dx = (. 49
14
Introduce now Eq. (44) into the average of (35a):
/ 85\ 2 2 2
—2Dy— ) = W4V 4+ 34— 1u
\ o at/av v+ 3 ¥

+ A0, — D — D V - V). (45)
This result may be interpreted as the energy law for
our stochastic problem. In the quantum-mechanical
case it reduces to

/_,05\

\— ?t/ = <%mv2 + %‘muz + U>av,

which expresses that the average total energy is given
by (—h(0S/0t)),, and equals the sum of the average
kinetic energy $m(v® + u?),, and the average potential
energy (U),, = (mV),,. We see that the two veloci-
ties v and u contribute on an equal footing to the
kinetic energy of the motion and that the kinetic
energy of the stochastic velocity, im(u?),,, comes
directly from the u-terms in (35a), i.e., from Bohm’s
“potential”® [cf. Eq. (34c)]:

<m¢B>a.v = _mD0<V * u>av - %m<u2>av
= %m<u2>av s

where we have used once more Eq. (44). As we have
seen, the average total energy is given by

/—2D0m GS\

A 3t/

Defining the expectation value (€) of an operator € by

(&) = f«p*ézp dx,

as is usual in quantum mechanics, we get immedi-
ately that the expectation value of the operator

(46)

(47)

is equal to the average energy e; therefore we can call
€ the energy operator. In an entirely similar way, it is
possible to introduce the momentum operator.?? To
see this, first note that from (36) and (37) it follows,
as it must be, that

() = {u),, = 0. (48)
Now, from the gradient of Eq. (31) and Egs. (28) and
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(48) we get that
(=2iDgV) = (V)gy = {C)yy

and, therefore, that the momentum operator p, such
that (§) = (mec),,, is given by

= —2iDynV. (49)

It should be noted that Eqs. (47) and (49) generalize
the concept of energy and momentum operators to
stochastic processes of the type discussed in this
section. Clearly, for the quartum-mechanical case
when D, = /if2m, they reduce to their usual values
& = if(0/dt) and p = —iAV. As is well known, the
uncertainty relations for (4, x) and (¢, €) follow
immediately from the above results and are thus a
consequence and in some sense also a measure of the
stochastic properties of the ensemble. For example,
if we introduce the velocity operator & = fijm, "such
that (&) = (¢),, and (&%) = (v + u?),,, then we have
when D = D,,

2
(x> Df= | lim - E(@x)"
4| at-o0 At
where
Axy = x; — (Xhay> D¢ = ¢; — (Ciays
and
dx, = x,(t + At) — x,(1).

We see that the dispersion of an individual particle,
owing to its interaction with the vacuum, sets a lower
limit to the product of the fluctuations of x; and ¢;
in the ensemble.

V. COMMENTS ON THE POSSIBLE
HIGHER-ORDER EFFECTS

For the study of some possible effects of the higher-
order terms and for simplicity in the writing, we
introduce the following conventions. Firstly, all the
quantities written before to second order will carry
here the superscript 0; secondly, the higher-order
terms will be written in shorthand notation as follows:

S Fi 99,0, = F,0™,  (50a)
ik
where F#*" " is the ijk - - - -component of the coefficient
of order # in the Taylor series (6), for n > 2. Also we
write

o0
S F,3"™ = F,a".

(50b)
n=3
With these conventions, Eqs. (8) take the form
D =D 4 F,om,
D = Do+ F o (51

Then, extending the notation of Eq. (13) to the
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higher-order terms, we write

Fi=}F, + F,),

F,=}F,—F,), (52)
and hence from (11) we get

D, = DY ~ F,d",

D, = DI+ Fro~. (53)

Introduce now these operators into the fundamental
equations (17) and from them, using the method of
Sec. III assuming that F= do not depend on the co-
ordinates, obtain the corresponding Schrédinger
equation. The result, for D, = D, D_ =0, A = +1,
is

2iDaa—'f = 2DV + Vy + Vgy,  (54)
where Vg is given by
Vs= —2D3 F, @ Iny=>Vy, (55
n=3 n=3
with
F,, = Ff — iF. (56)

Equation (54) is the form Schrédinger’s equation
takes when we eliminate the assumption made in Secs.
II and IV, namely, that all F, are zero, i.e., when we
no longer assume that the stochastic interaction of the
particle with its surroundings is Markoffian, but
corresponds to a more general process with some
“memory.” We see that the nonvanishing higher-
order terms give rise to a “potential” Vg, which
depends on both velocities v and u and their deriva-
tives through the derivatives of In ¢ = R + iS. The
question whether the coefficients F,, are zero (as was
assumed in Secs. III and IV) or different from zero
(as we here assume) remains open as long as we do not
have a theory of the interaction between the particle
and the surrounding medium; this lack of information
makes it impossible at the time being to get quantita-
tive conclusions from Eq. (54), because it involves
Vg, i.e., depends on the still unknown parameters F;- .
Nevertheless, it seems interesting to investigate a
little further some qualitative implications of Eq.
(54) for simple cases, at least to see if the introduction
of the coefficients F,, may make any sense.

Restricting ourselves to this scope, let us treat Vg
as a small perturbation and study what is almost the
simplest problem we can handle: the corrections to the
energy levels of a stationary system to first order in
perturbation theory, assuming that F; are zero
(because of isotropy) and F; is zero, but Fj¥* =
Fy0,;0,, with F, a constant (in analogy with D;f) and
that all the remaining coefficients F* may be neglected
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in a first-order calculation, Then we can write Vg = ¥,
or
VS = '—2DF4V2V2 ln Y. (57)

The correlation 8E to the energy levels of a station-
ary system to first-order in perturbation theory due
to Vg as given by Eq. (57) may be obtained by a
straightforward but a little lengthy calculation. The
result may be written as follows:

OF _ (V) = —2DF(VV)
m

+ DF((3ma® + mV — E)®. (58)

Since this éE is not identically zero for F, # 0, the
concluston is that we may expect a small shift of
the energy levels of a stationary system if some of the
higher-order coefficients do not vanish. Clearly, if in
fact this JE corresponds to a real effect, it must be very
small, because we know that the Schrédinger equation,
which corresponds to putting F, = 0, is an excellent
approximation for nonrelativistic spinless systems.
That this correction is indeed small can be seen from
the following argument. It is well known that the
radiative corrections in quantum electrodynamics
give rise to a term proportional to (V2V), which is
responsible for the most important contribution to
the Lamb shift.1® Suppose one could identify the
corresponding term in Eq. (58) as a contribution to
the Lamb shift; then, F; must be at most of order

(59)

where « is the fine-structure constant, ¢ the velocity
of light, and /, the Compton wave-length. If F, exceeds
this value, then we would be predicting a correction
which does not exist. Nevertheless, the result is
encouraging, since it shows that further developments
of the theory may yield interesting results.!* This will
be particularly so for its extension to relativistic
particles with spin, because our arguments, while
suggestive, cannot be made conclusive until either a
value is found for F; from first principles or at least a
relation is established between the prediction for JE
and that for some other effect, e.g., the anomalous
magnetic moment. Work on this extension is being
carried out at present.

F4~0£Cl:z,

VI. CONCLUSIONS

We have reformulated the theory of stochastic
processes as a generalization of Newtonian mechanics

13 J, M. Jauch and F. Rohrlich, The Theory of Photons and
Electrons (Addison-Wesley Publ. Co., Reading, Mass., 1955).

14 It is worth noting that there exist semi-classical explanations of
the Lamb shift for nonrelativistic electrons, thus showing that it is
not wholly a relativistic effect. For example, T. A. Welton, Phys.
Rev. 74, 1157 (1948).
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and shown that Schrodinger’s equation emerges from
this theory as a particular case, which, incidentally,
is the simplest possible from a certain mathematical
point of view. If together with the amplitude y
previously introduced for mathematical reasons we
introduce the quantity p = y*p, then the theory
produces a Fokker-Planck equation in configuration
space for p, showing that p must be interpreted as a
probability density and hence p as a probability
amplitude. The Fokker-Planck equation may be
written alternatively in the form of the usual continuity
equation of quantum mechanics, thus identifying p
with the probability density of quantum mechanics.
Furthermore, the usual quantum-mechanical operators
and commutation relations emerge from the theory in
a simple and direct way, as a consequence of the
stochastic nature of the motion. In this way we have
demonstrated that it is possible, at least in principle,
to reinterpret ordinary nonrelativistic quantum me-
chanics as a stochastic process characterized by
certain values of the parameters of the general theory,
some of these values differing from those needed to
describe Brownian motion. We interpret this differ-
ence in the parameters as a manifestation of the
different mechanisms responsible for the interaction
between the particle and the medium through which
it moves.

With the methods here developed we have, in
principle, three ways to deal with stochastic and
quantum problems: starting from the basic equations
given in Sec. II, which represents the Newtonian
approach, so to speak; writing a Schrodinger equa-
tion for the problem; or, finally, starting with the
corresponding Fokker-Planck and energy equations
given in Sec. 1V, a method which may be compared
with hydrodynamics. In practice, however, the
mathematical structure of the equations seems to
indicate that in every case the methods usually
employed are the most appropriate, even though the
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theory gives a Schrodinger equation for Brownian
problems and a Fokker-Planck equation for quantum-
mechanical problems.

From the standpoint of the results here presented
usual quantum mechanics corresponds to a Markoff
process with all the moments of order higher than
two vanishing in the limit A¢ — 0 more strongly than
Ar. If we consider this only as an approximation
and retain the remaining moments in the equations,
then the higher-order moments introduce more terms
in the Schrédinger equation, giving rise to a perturbing
potential; in other words, memory terms appear in
the equations, the process ceasing to be Markoffian.
These non-Markoffian terms may produce in the
general case a shift of the energy levels; as an example,
the fourth-order moment introduces a correction to
the energy levels of the hydrogen-like atom, which
has just the form of the dominating correction
responsible for the Lamb shift in quantum electro-
dynamics. The calculation of the perturbation due
to the additional terms is only qualitative at present
because we lack a theory capable of predicting the
value of the moments, but we may expect that a
more thorough study of the problem may be of value
to get a definitive conclusion about these questions.

The interest of the theory seems to be twofold.
On the one hand, it allows us to reinterpret quantum
mechanics from a different, clear, and simple physical
point of view. On the other hand, we expect the
theory to yield useful results in going beyond the
domain of present-day quantum mechanics. Work
along these lines is being carried out and will be
reported on in due course.
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Potentials for Three-Body Systems
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Simple expressions for the Coulomb, Gaussian, and harmonic-oscillator potentials acting between

pairs of particles in a three-body system are developed. Each expression consists of an expansion in the
S-wave generalized angular-momentum eigenfunctions for three particles.

L. INTRODUCTION

The quantum mechanics of three-body systems
has received a great deal of attention recently by a
number of investigators.!~® These investigations have
been concerned with the kinematic representations
of three particles, as well as with applications to
specific problems. Several different coordinate systems
have been proposed, but that originally suggested by
Smith? is particularly well adapted to the treatment of
some systems. It is the purpose of this paper to
present expressions of particularly simple form for
the Coulomb, Gaussian, and harmonic-oscillator
potentials in terms of Smith’s coordinates.

All coordinate systems which have been suggested
so far separate the motion of the center of mass
(three independent coordinates) from the relative
motion of the particles (six independent coordinates).
The latter are represented by the two vectors §! and
Ezillustrated in Fig. 1. They are related to the position
vectors Iy, g, Ty in the “space-fixed” system by the
relations!

gl = (1/d)* — 1Y), €
gogfe-mitm)
n m; + my ’
where
&= %(M) 3)
f\my + my + my
and u is the reduced mass
mymym
‘uZ = 177427703 (4)

m; + my + my

The relative motion consists of the motion of three
particles within the “body-fixed” axes and the
rotation of the latter with respect to “space-fixed”
axes. Such a rotation is conveniently expressed by the
Euler angles a, §, ¥, which are also illustrated in the
figure. It is immediately obvious that velocity-inde-

. Smith, Phys. Rev. 120, 1058 (1960).
. Smith, J. Math. Phys. 3, 735 (1962).
. Whitten and F. T. Smlth J. Math. Phys. 9, 1103 (1968).
lckendraht Ann. Phys. (N Y.) 35, 18 (1965)
. Dragt, J. Math. Phys. 6, 533 (1965).
. Bhatia and A. Temkin, Rev Mod. Phys. 36, 1050 (1964).
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pendent central potentials are not functions of the
Euler angles. The coordinates in the body-fixed

system, E! and B2, are expressed in terms of a hyper-
radius p and two “kinematic” angles ® and ® by the
relations?

& = pcos O cos D,
£t = —psin Osin @,
£=0,
& = pcos®sin®,
& = psin O cos D,
2o,
p = [IE"* + B4,
in which the subscripts 1, 2, and 3 refer to the “x,”
“y,” and “z” components, respectively. The coordi-

nates E!, E2 are first transformed to the irreducible or
spherical representation in which

=@ Fe -
& =¢. (6)
The irreducible form of the &1, £2 is then transformed

to the equivalent representation in the space-fixed
system E!, &2 by the relation

2 E‘D K(2B), (M

in which the D! is the three-dlmensional representa-
tion of the rotation group O(3). The definition of the
D' given by Edmonds’ is used throughout this paper.

(%)

i&)),

IIl. THE SCHRODINGER EQUATION AND THE
GENERALIZED ANGULAR-MOMENTUM
OPERATOR

In this section we digress slightly from the main
theme in order to build a rationale for our treatment
of the potentials. The Schrédinger equation for three
particles in the center-of-mass system! can be written

as
2 3 5
(gl j=1 a(é')2

7 A. R. Edmonds, Angular Momentum in Quantum Mechanics
(Princeton University Press, Princeton, N.J., 1957).

w w) ®)
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F1G. 1. The coordinate system for three particles; x, y, z represent the space-fixed axes; x", y”, z” represent the body-fixed system. The
Euler angles of the principal are represented by o, §, y.

where E is the energy and V is the potential energy
operator. This form of the equation is not a conven-
ient one for most purposes, so we recast it to

1 a 53 A2 2‘u
— =) - =+ZE-V|p=0, O
[95 dp (P 3P) p i )]w ®

where A? is the generalized angular-momentum
(GAM) scalar operator®

J I SR EY S
sin 40 90 20
2 2 2
_L (—@— 2 9 g 2@)
cos?20\0@*  9y* ODdy
2 lih cos 20

— =+ =) 2=+ ).

sin® 2@( + ayz) +2 o0 L T )

(10

Here, L? is the orbital angular-momentum operator
with eigenvalues /(/ + 1) (/ integer > 0) and L,
and L_, are the familiar ladder operators of orbital
angular momentum. A2 has the eigenvalues A(4 + 4),
where A =0,2,4,6---0r1,3,5--.Inadditionto

8 A% is a Casimir operator for the group SU(4). See Refs. 3 and 5.

A2, we also have the commuting observable

62
; = =gt (1)
whose eigenvalues are?
R if Ais even
and L is even,
0=0,£2, x4 . L 1~2), ifliseven
and L is odd,
or
R if is odd
and L is odd,
o=£L £33 EX 02, ifiisodd

and L is even.

Finally, there is a second Casimir operatorzs Y,

which need not concern us here. The observables
E9 AZ’ zt zd7 LZ’ and

62

Ly= ——

’ Ou?

completely specify the system. In the particularly

simple case where L% =0 (S states), the GAM

(12)
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equation

Ay = A4 + 4y (13)

takes the form
1 J . d
2 sin40 2
|:sin 40 00 - 00
2
(1 4 cos40)

Its solutions are the diagonal elements of the (34 + 1)-
dimensional representation of SU(2):

— A+ 4)]¢ =0. (14)

v = D¥,(40, 40, 0), (15)

where 4 and ¢ must, of course, be even; script type is
used to denote kinematic rotations, italic type to
denote spatial rotations. It can be shown? that the
appropriate interval of integration with respect to ©
is 0 to /4, and with respect to ® is 0 to #/2 so that
4®, 40 are appropriate arguments for all the eigen-
functions of A2 Hence, we seek to expand the
potential ¥ in a series of functions which are orthog-
onal on this interval. In particular, we shall see that
the functions of the expansion contain GAM S-state
functions.

III. THE POTENTIAL EXPANSIONS

If the interactions are central two-body forces, one

can always write the potential operator as
V=V(r* —r, r* — ], [r? — ).

(16)

In particular, the Coulomb potential between a
particle i of charge e and another j of charge eZ is

Vi = ez — 1. an

From Eqgs. (1) and (2) we can express the position

vectors r’ — r? in terms of &’ as

r* —r' = dg, (18)
1 myd®
r3 _ rl = =| ¥2 + 2 I:I, 19
r ki (19)
1 myd*
rs——r2=—[2——1—— 1] 20
7 g —— 3 (20)
The corresponding distances become?
It — | = peg[l + cos 20 cos 2D + 5,1,
i, J, k cyclic, (21)
¢, =d2)t, if k=3,
e}
=—d=[—11+ (L)] , i k=1,
J2Ld m, + m,
d 1 mqy 2 H .
=—|= , if k=2, (22
2[(14 + (ml + m2):, 1 ( )

1633
sin 26, = —2—2L if k=1,
d(my + my)
= 2_—2_{"3__ , if k=2,
d*(m; + my)
=0, if k=23. (23)

We now wish to find an expansion of
[1 + cos 20 cos 2(® + 8,)] 2.

[t is immediately apparent that this expression can be
recast as
[1 + écos 2®(e2i(¢+6lc) + e—2i(°+5k))]—é
= [1 + 30},(40 + 46, 40, 0)
+ 1D, 440 4 46, 40,01, (24)
which still does not help us very much. However,
with the aid of the binomial theorem, we obtain the

following series (where the arguments are omitted
from the D’s):

3 3
[t + 3D}y + 3973 4]
= S v 1
“20( ) (2) 2 ( )ﬂ)h"_":’) %("”l‘)g)—;uréu .

p=0

(25)

The group properties of the D’s can be invoked to
obtain a great simplification. Upon expansion in the
appropriate Clebsch-Gordan series,” the terms on
the right-hand side of Eq. (25) are expressed as

#(v—p) 3
( )ﬂ)ﬂv—z),i‘(v—u)ﬂ)—‘i‘u,—iu

— 2v—w),3n,dr
- (:u)r—lvz—— (C%(v—Z).iz,%v—u)zg)iv—u bop
(r + Dv! '
= Dyt
r GO =G +r+ 1) e

where we have used the relation?’

(r+ D+ ! p! }
GO =GO+ )+ D!
27
the

(26)

Fov—p),dp,dr —
Clov—bubvy = [

for the Clebsch-Gordan coefficients.
expansion of expression (26) becomes

vg)}:(r+ 1)

% ' + H(=p’ pir
b—p vy
TRHGG — M GE + 1) + 1)1 Pwdvn

where r and » have the same parity because of the

Hence,

(28)

properties of the D’s. Replacing 4» — u by x4 and

redefining the dummy index » such that » — v + r,
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we obtain

'y+r+3d)
TGP (@ + r + 1!

=™ oll,,.
(29)

SSe+0

v=0r,u.

We now employ the duplication theorem for gamma
functions®

2r 4+ 1 2r + 3\ 2%
= F h—
'v+r+3d) F(v + 2 ) (v + 2 )(2”),}

(30)

and interchange the order of summation over v and r.
This is permissible if the series is absolutely con-

vergent!® when summed over » or r for |ﬂ)§;}”l <1
Such may be shown to be the case. Carrying out the
summation over ¥ yields

2 T + 3@2r + D' + 3(2r + 3))
@4 r+ 1!
_T@er + Dra@r + 3))
- T(r+2)
2r+1 2r4+3 ., .
sz{ i ,r+2,1}
_ TG@r + )DGEr +3)
TGERr + SHrEEr + 7)
_ 16
T @r+nEr+3)’

v=0

(31)

where ,F; is a hypergeometric function. Hence, we
can express the expansion as

. 16 =

ij

- (r+ D= b
B p(27r)* =0 2r + D(2r + 3) ,,g_, $ude’

(32)

which is our final very simple result. It will be recalled

that the 5032;,. are S state eigenfunctions of the GAM
operator.

It is immediately obvious that the technique out-
lined in this section can be applied to potentials other
than the Coulomb. For example, the Gaussian
potential

V& = aexp (K [r' — 1'% (33)

? See, e.g., M. Abramowitz and I. A. Stegun, Handbook of
Mathematical Functions, National Bureau of Standards Applied
Mathematics Series (55) (U.S. Government Printing Office,
Washington, D.C., 1964), p. 256.

10 See, e.g., E. T. Whittaker and G. N. Watson, A Course of
Modern Analysis (Cambridge University Press, Cambridge, England,
1927), p. 28.
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has the expansion
2 exp (—Kcp?)
Kcip®
0 i'f
X 20(—1)'(r + DI,(Keip®) 2 Dpp (34)
r= 1

[I,,1(x) is the modified Bessel function], and the
harmonic-oscillator potential

Vi=a

VEH = to,(¢ — x5 — ¥ + 1)}, (35)
where rf and r} are the equilibrium positions of par-
ticles 7 and j, has the expansion

VE =2 Pl + 1DL@(@ + 8,), 40, 0)

+ 1Dk_4(4(@ + 8, 40, 0],
P’ = I8 — El* + & — &I (36)
IV. APPLICATION
As an application of the Coulomb-potential
expansion given above, let us consider the case where
the S-state eigenfunction of the system is written as

y= ;amp)ﬂ)iii,(w, 40,0.  (37)

The quantities which must be derived in this case are
the scalar products (“Di::ia' , Vﬂ)ii},). For example,
in the case of the helium atom or the negative ion of
hydrogen,

(o4, Vi)
_ 64 Yan (_1y72,/2 Z cos (o — o)m) — 1]
p(F i @2r + 12r + 3)

X (Cii:iiﬁ;(a——a’)){ (38)

where Z is the atomic number. Substitution of Eq.
(37) into the Schrédinger equation (9) and application
of Eq. (38) yields a set of coupled hyperradial equa-
tions whose solutions (with boundary conditions
applied) suggest hydrogenic type functions

R;_(x) —_ e-;»&cx;. Li;'H(X),

(39)

where n is an integer. Use of the orthogonality
properties of R; and proper symmetrization of the
wavefunctions will yield a coupled set of algebraic
equations (infinite in number) which can be solved on
a computer by suitably truncating the series (37).
Similar programs can be carried out for other poten-
tials which are expandable in the above manner.
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The derivation of the explicit algebraic expressions of the SU(n) state vectors in the boson-operator
realization is shown to lead to a generalization of hypergeometric functions. The SU(3) state vectors are
rederived by the combinatorial method—propounded in Paper I [J. Math. Phys. 10, 221 (1969)] of this
series of papers—and are shown to be represented by a hypergeometric distribution function and an
associated generalization of the Young tableaux calculus. The SU(4) state vectors are also derived to
demonstrate the main features of the general U(n) state vectors. The SU(4) state vectors are expressed in

terms of the constituents of Radon transforms.

1. INTRODUCTION

In Paper I of this series' it was shown that the
boson-operator realization of the maximal and
semimaximal state vectors of the irreducible repre-
sentations of U(n) are built upon combinatorial
structure. First, the /attice? (the partially ordered set
in the mathematical sense) of the invariants of U(n)
in the canonical chain U(n) > Un — 1) -- > U(1)
displays most explicitly the combinatorial® structure
upon which the algebra of the state vectors is based;
second, it was found that for these states the com-
binatorial calculations were implemented by a gen-
eralization of the Nakayama concept of a hook.

The present article starts, in Sec. 2, with a rederiva-
tion of the SU(3) state vectors by the propounded
combinatorial procedure; the details of the procedure
are important in demonstrating why and how the
»Fy hypergeometric function arises in SU(3) from the
combinatorial probabilistic hypergeometric distri-
bution function—as a result of the associated general-
ized hook calculus. It is then shown that the
associated combinatorial problem leads to a general-
ization of Young tableaux calculus, namely, a calculus
over generalized skew diagrams.

In Sec. 3, it is demonstrated that a large class of the
general U(n) state vectors, when expressed in the
boson-operator realization, can be expressed in
closed form if we introduce a new combinatorial
generalization of hypergeometric functions. It is
interesting to note that this is the first time that such a
generalization appears necessarily in a concrete
mathematical context, namely group theory, rather

* Supported in part by the Army Research Office (Durham) and
the National Science Foundation.

t Present address: Department of Physics, Indiana University,
Bloomington, Indiana.

! M. Ciftan and L. C. Biedenharn, J. Math. Phys. 10, 221 (1969).

2 Which makes the Weyl branching law (see Paper 1) immediately
transparent.

3 In the sense of Gian-Carlo Rota, reference in Paper 1.

than as an arbitrary generalization of the ,F; function
to those of many variables.? It is this connection to
group theory and Lie algebra® that makes the appear-
ance of such functions rather interesting for both
mathematics and physics; it is also in this context that
the combinatorial procedures which offers a practical
computational means (aside from elucidating struc-
tural content) becomes extremely valuable.

In our effort to uncover the complete structural
content of all U(n) states, we show in Sec. 4 that the
general SU(4) state vector expressed in terms of these
generalized functions can be cast into the constituents
of Radon transforms. In Paper I we saw that the
SU(4) group is sufficiently more general than SU(2)
and SU(3) groups to reveal certain peculiarities of
SU(n). Here again we demonstrate such a peculiarity:
the most general SU(4) state, in closed form, is not a
complete Radon transform but is expressed over the
constituents of Radon transforms, a ““folded” function,
as we shall see, which seems to bear some relationship
to the group geometry. It is hoped that the combina-
torial method may shed some light on the possible
existence of an even more general function in terms of
which all U(n) states could be expressed.

2. GENERAL SU; STATES

Next we want to give the details of the method of
obtaining the general U, or SUj states by the use of
the lowering operator E,, as was done by Baird and
Biedenharn.® These details are important in demon-
strating that the propounded combinatorial method
admits of generalization.

4 See the works of P. Appell, referred to in Ref. 9 below.

® See, for example, W. Miller, Jr., “Lie Algebras and Some
Special Functions of Mathematical Physics,” Memoirs of the
American Mathematical Society, Number 50 (American Mathe-
matical Society, Providence, Rhode Island, 1964); W. Miller, Jr.,
Lie Theory and Special Functions (Academic Press Inc., New York,
1968); J. D. Talman, Special Functions, A Group Theoretical
Approach (W. A. Benjamin, Inc., New York, 1968).

¢ G. E. Baird and L. C. Biedenharn, J. Math. Phys. 4, 1449 (1963).
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Consider the semimaximal (let “s.m.” denote ‘“‘semi-
maximal” and “max” denote ‘“maximal” when used
as subscripts of normalization constants) state of SU,

on which we want to operate with (E,;)™2"™1, Thus,
My Mg 0

V = (Ey™ ™ Mo Myg
Mia
= M} (Ey)™e ™

X (@19)™ (@)™ ™™ X (@)™ "(ag) ™7™ (0)
= M;.%n.(a12)7"”(03)'"“_7""(1521)"“z_m“

X (ayg)™ (a1 |0)

(letting n= m12 - mn, %= m23 -

(2.1)
My,
B = myy — my),
= M4 (o™ (o)™
x kgo( ) 2 (9@ B @ 0
= M Haym(agyme—me

2 o(n al B!
xgo(k)(a — LB — (n — )

X (@39 Mazs(a )P~ " P(an)" ™ |0), (2.2)
but (a)( 8
b (km) = k/\n — k)
a.ﬂ( an) = (OL + /3)
n
_ (n) ol g! (@ + B — n)!
kl(a—k)I(B—n+k! (x+p)!
Therefore, (2.3)
V= M (ar)™(ag) ™™
(o + B)! a By \n
X m X (a;3) (al)ﬂ (as)
X 3 by ok 1) (M) 10) (24)
k=0 a13a5
But
3 o gk n)(“—““—l)k = AGFi(—n, o f— 1+ 13 u),
k=0 a,30z
(2.5)
where
_ B+ B—n)! )

SE—-mlat A awa

(myy — myy)! (Mmyy — My, + 1)!

MIKAEL CIFTAN

and ,F; is a “hypergeometric function’; there exists a
well-defined combinatorial meaning associated with
Eq. (2.6), which we shall give in the sequel.

It will be shown that the coefficients A, ; are already
appropriately “normalized” in a combinatorial sense;
therefore, Eq. (2.6) indicates that the square of the
correct normalization constant, or rather the proba-
bility coefficient of the general U, states, is

L b x ((’"12 - "‘23)), @7
s.m. Us (my; — my)

the last binomial factor being necessary to effect the

hook changes in the indicated section (my, — my,)

after the my; boundary is moved; it is, in fact, the

square of the normalization constant of this (E,, )™2~™11

lowering operator. To show that

Loy h.(x;s) X ((m” B mz"‘_)), (2.8)

s.m. My — Mgs)

general =

SU,3
we look at the leading term, which is the x = 0 term,
of h giving A4:

I (myy — my + 1)!
Ms.m. (m12 + 1)‘ m22!

(mys — myy + 1)!
(Mg — Mgy + 1) (Maz — myy)!

1 1
(Mmyy — mgy)! (Myy — myy)! (2.92)
(M1 — Mmgy)! (Myy — myy)!
Aofh..:
of h (Mg — Mgg)! (Myy — myy)! (2.9b)
(35 — mz)) . (myp — my,)!
((mu - m23)) .(mn )] (Mg — 1130)! , (2.9¢)

whence the product of these gives

P _(myy — myp)t (myy — myy)!
general — _ 1 '
SUs (Mg — my)! (Mmyp — myy)!
(myy — myy + 1)! (my3 — My + 1)!
(myz + 1) myp! (my3 — myp + 1)! (g — myy)!
1 .
(Mg = mgg)! (myy — my)! (myg — myg)!”’
(2.10)

or again we may choose to use the normalization
constant’:

Nt = [
(myy — my)! (Mg — myp)! (Mg — Mmyp)! (Myg — Mgy + 1)!

(myy — myy)! (Mg — Myy + 1)! (Mgy — mgy)!

(Mg — myy)! (Mg — Myg)! (M3 — Mgz + 1)) (Myg — mgy)!

7J. G. Nagel and M. Moshinsky, J. Math. Phys. 6, 682 (1965).

T (2.11)
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of the “total” lowering operator

(Ea)ms (B e mn(Lymems (2.12)

(with 1, = myg — My, Ny = Mgy — Myy, Ny = Myy —
My, & = Myg, f = Myg — Mgy, ¥ = Myg — Myg) i
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(}’ +ns — nl)! B—ng y—n1—ng ng
(7 + 1y — 1y — 1) (a19)" "(ay) (as)

ng Aoall i
X zhng,v—nl(k; n3) (ﬁ) |0>
k=0 alaa

Factoring A4 out of the last factor 4..., the factor

(2.13b)

n 1 4
(Eq)"(Es)"(L)™ 3 (a120)(a12)(ay)" 0) (y —n)! (v + ny—ny—ny)!
mex s (y = m—n)!  (y+ ne— ny!
1 B! p! . btai
=— X X as in Eq. (2.6), we obtain
Mmax Us (/3 - nz)! (7 - nl)!
(¢ + 8+ D! L v & 7"
" 1 —~72 ny = T
o T Tr 1o X e @) TN Mo, Mo v, (B = no)l (v — m)!
y+8+ 1! (y — n)!
X (Ey)™(ag3)™(ay)’" |0 2.13a
(En)"(a1)"™ (@)™ [0) (2.13a) iy i pe R r—"
_ 1 g! y! (2.14a)
3 — 1 (y — !
Mmax Us (/3 nz) . (7 nl) 4 = N;l n 1 G. (214b)
(7 + ﬂ + 1)' a B—ng n max Us
v+ B+1—n)! X (1) (aze)”"(as) Rewriting the contributions, we have
‘N)EI — I: (my — myp)! (myy — myy + 1)!
(myg — my)! (myg — myp)! (myy — myy)! (Myg — myy + 1)!
(mys — mya)! (Myy — Mgy + 1! (myy — my,)! ]% (2.152)
(mgs — myp)! (M3 — may)! (My3 — Mgy + 1)! (Mg — mgy)! ’
1 - l:(mm — Mgy + 2)! (Mg — mgg + 1)! (Mg — My + 1)! t
Mexu, (Mig + 2)! (mgg + D) mgg! (g — mgg + 1) (Mag — mag)! (mag — mag)! |
G = (mas — mag)! (M3 — Myg)! (Mg — Mgz + 1)! (Mg — Myy)! (2.15b)
(map — my3)! (Myy — myg)! M1y — Mgz + 1)1 (my; — myy)!
Their product is
1 - |:(m11 — Map)! (Myy — Mag)! (M3 — My 4 1)!
Mge?]em (M1 — mag)! (Myy — map)! (myy + 1)! my,!
(m13 — myy + 1)! :r (2.16)
(Myg — Mgy + 1! (Mg — myy)! (my3 — myy)! (Mirg — myp)! (myy — myg)!

So far we have seen the usefulness of the representa-
tive tableaux both in the determination of the explicit
algebraic form of the operator part as well as their
normalization constants of the states. We now show
that the representative tableaux also embody a
combinatorial interpretation even for the expression
of the general U, states [Egs. (2.24) and (2.25)}.

To arrive at the proposed interpretation, we need the
following preliminary observation. Takingthe SU;case
depicted in Fig. 1, when we move the m,; boundary
from its my; = my, position (for the semimaximalstate)
as indicated, inserting a boson operator a, in the single
box now available according to the prescription of the

Fic. 1. The representative

c o A diagram corresponding to

/‘ B8 E the SU(3) state with m;3 —

. . g [/_ Y my, =1, showing the origin

B b' 2 3 of the hypergeometric func-
2 3

tion generated in the lower-
ing procedure.

betweenness conditions, we are faced with the follow-
ing dilemma: the hook of a box in the first row between
boundaries C and D will have to pass over the a,
boson to reach boundary E, yet the a, boson is not
involved in the a3 = (a1b3 — azh;) entanglement!
Therefore the hook, in this form, cannot be used due
to the presence of the “foreign” boson a, . If the hook
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is not used, a powerful computational tool is lost!
We shall see how one can resolve this dilemma below.
This dilemma can be resolved when one recognizes
that the associated combinatorial interpretation uses the
hypergeometric distribution function which follows.

Consider a finite number of m balls, mp of which
are white and mq = m(l — p) of them black. When
a sample of s balls are drawn out, one at a time (which
will be eventually interpreted as moving the boundary
of my, one box at a time), without replacements, the
chance of obtaining x white and s — x black balls in
s trials is

hmp.mq(x’ S)

__ (mp\( mq m
=(V))/0) @0
_ _ (mp)! (mq)!
x!(mp—x)! (s—x)!(mg—s+ x)!
st(m — s)!
m!
= st (mp)! (mg — s)!
- x!(s—x)! (mp—x)! (mq—s+x)’
(2.18)

where

_mqt(m—s)! (2.19)

m! (mq — s)!
We then allow x to vary to account for the probability
of obtaining all possible number of white balls among
the s balls drawn, this being given by the coefficients
of u*in

A[IH_Q_XHM
mg—s-+1 12
mp(mp — 1) %

(mg — s+ 1)(mg — s + 2)
mp(mp — 1)---(mp — s + 1)
(mg—s+1(mg—s+2)--mg

4+ -+ X u’:].
(2.20)

Relating this to our problem, as usual the properties
endowed by the m objects (in our case ma’s; see Fig.
2) is the entanglement property (the whiteness

Case: s < myg — myg
| .

|

—

m
l

:a‘ "‘n_"'loz myz ’"ls'aj

b, Moy, M F—s—

}<—mp |ﬁ mq -

Fi1G. 2. The representative diagram of the SU(3) general state for the
case s < My ~— Myg.

MIKAEL CIFTA.

my——

)
!
x=0: 1G gz
b izqugL Mas—] s
!

myz — ’"uj
a3

ma

,——mp T h my=m
M. my~m, m,,~m -
(ulz)"'zz | (Clla)m” 22 "y i zs[ (02) h2” My i("l) s Mz
" My —— myz m3
M= My —V L]
| -
Pomaitmg, | ometmyg | my-1=m
!(0,5) 23 22 F‘J.) " 23 (02!) (02) 12 N
; | I
et l %% (]
efc. until x = smaller of lengths mp and s.
F1G. 3. The tableaux corresponding to the x =0, 1, - - - terms of

the general SU(3) state vector when the hypergeometric function is
expanded. U® is interpreted as the necessary changes to be made to
factor out a common factor:

(a12)™2 - (ay5)m2a—me2 - (q,)™11-™23 + (g,)™12-™11 - (g5)™19~M32,

property = entanglement of a’s with by’s); mp of the
a’s, at the start, are entangled to by’s and mq of the a’s
are nonentangled. s of the a’s are drawn out (or put
into the a, category), one at a time, without replace-
ments, and we have derived the probability that,
out of the a’s that have been drawn out, there will be
I,2,---, s white (entangled to b;) a’s.
Diagrammatically, these correspond to the general-
ized tableaux® of Fig. 3. By making the substitutions

mq = myy — My,
S = my — my, (2.21)
mp = Mgy — Mys,
indicated by the diagrams, we obtain
(M1 — Mag)! (myy — myy)!
(M1 — mgg)! (Mg — myy)!

X (al)mu—mza X (az)mlz—mu

miz—m
X (ag)™~™e x ,F, (mzz — Myg, My — My,

My ~ g + 1 “—“—) 0. (2.22)

QaQ43

To this we multiply the initial M7} s, s well as the
operator parts that were not affected and left out.
Also, moving the my, boundary to its general position
has changed the hooks in the (m;, — m,,) portion;
therefore these hooks need to be readjusted by the
factor

[ (myy — myy)! T_ (2.23)

(Mg — myp)! (myy — myy)!
Collecting all factors, we obtain the algebraic

8 M. Ciftan and L. C. Biedenharn, Science 154, 418 (1966).
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expression of the general SU, state:
myg Moy 0
my, Moy = N(a;))™*(as)™* ™ X (a)mrma(gyymem™
My
X (ag)™¥ ™2 x F, (m22 — My, My — Myg, My — Mgy + 1 Z‘Z%) 10y, (2.24)
2033
where
N? = (my; — mgp)! (M — myy)!  (Myp — mys + 1!
(myy — mag)! (Mg — myy)! (myq + 1)! my,!
(mys — mgg + 1)! (2.25)

(Mg — my)! (myy — Mag)! (Mgg — Mya)! (Mmyg — Mgy + 1) (my5 — my,)!

We observe that, above, a particular choice (case:
my; > myy) of the “general position” of the my,
boundary was made due to its simple tableaux, yet
the final result was completely general. This we
attribute to the “natural”-ness of the “coordinates”
m;; of the betweenness lattice. (We postpone the
discussion of the more fundamental “lattice” and
related “partial ordering™ properties of these com-
binatorial structures to a future article.)

The result, Eq. (2.24),is the same as Eq. (44) of
Baird and Biedenbarn.”

3. A GENERALIZATION OF HYPERGEOMETRIC
FUNCTIONS ON U, STATES

To see how the h, g functions play a central role
and generalize, as an example we perform

(Esp™(a) ™ (a1) (a0 10) = J
and obtain

3.1
J = i " (g 4 o+ ag)!

=0 a0 (g + ag + 0y — 1)!

X (a)™(a12)"(@10)™ "(20)" X Ry agv(K1s k23 1)

% %
x (222 (222", (3:22)
1894/ Q13024
where
() () o =)
ky \ky))\n—k,—k
hzl.ag:N(k19 kz; n) = . : - 2 y (33&)
N
(»)

N=o; 4+ oy + oy (3.3b)

is a generalization of Eq. (2.17); it has a clearly
defined combinatorial interpretation similar to that of
Eq. (2.17) but now with three types of balls, or in our
problem three types of entanglement that we shall
demonstrate below. To see that

(o + a3 + ag — n)!
(7 + a2 + a5)!

xJ (3.2b)

in the form of Eq. (3.2a) defines a generalization of
ordinary hypergeometric functions of Eq. (2.5) with
two variables

9019
1494

— %13814

lu’l = ’
QA3Q34

it is convenient to recast Eq. (3.3a) into the form

ha;,ag:N(kl » kaym)
5 [y I P [ s oy
N N-—o
(») iy
= Ryy (v—ap (K13 1) X By N_gy—ay(Kas (B — k)
(3.42)

with
N=o 4+ oy + ag, (3.4b)

which shows that Eq. (3.2b) breaks up into the product
over the constituents of two hypergeometric functions
of the oF; type. It is clear that with more fypes of
antisymmetric forms [in Eq. (3.1)] on which the
(E;;)" can operate without having a vanishing com-
mutator, Egs. (3.1) to (3.4) generalize to those of
more variables.
We next show that

n  n—Ky

2 2 hayagntke, ke m)xpxR,

k1=0 %k3=<0

(3.53)

which appears in Eq. (3.2), is proportional to Appell’s
F, function®

Fia; by, by ¢; %y, X3)

— (a)k1+ks(b1)k1(b2)k: ki ks
=3> P xixst (3.6)
kit kgl (Oytrs
? W. N. Bailey, Generalized Hypergeometric Series (Cambridge

University Press, London, 1935); L. J. Slater, Generalized Hypergeo-
metric Functions (Cambridge University Press, Cambridge, 1966).
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on two variables x; and x,. Here, (@), = a(a + 1) X
(@+2) - (a+ k —1), (@), = 1. This F, function is
a particular generalization of the ,F; hypergeometric
function
(@b _x
Fa; b;c; x) =2 ~—=x
Filas b3 e 0 =2

of Eq. (2.5). Letting

.5)

a= —n,
b= —o,
by = —ay,

c=N—->o;,—n+1,
Eq. (3.6) becomes a finite series. Upon factoring
(=D x T (=% =1
after the substitution, we obtain the finite sum!°
F(—n; —ay, —ag; N — Doy — n 4 151, X,)
n ok n! 2 o;!
_kzo k,z=o((n A AL H(ai — k) k,.s/
—_— e !
W—Da—n+2k )x’{‘x’é’. (3.8)
(N =3 o, — n)!
Next, to show that Eq. (3.5a) is essentially Eq. (3.8),
we perform the rearrangement of terms in A:

3.7

h¢1.az;N
0(1! az!

(0 = k) ky! (org — k! k!
« (N =3 a)!
(N =3 o) = (n = k! (n = T k!
(N—=m!'n!(N— Yo —n)!
X
N!' (N—3a—n)!
n! ! %2
epagNin X (n—Ek;)!(al_kl)!k!(az_kz)!kz!/
(N=Sa;,—n+ 3 k)!

(3.92)

=A

(N —3 o —n)! , (3.9b)
where we have defined
wagin = = 2N =1Ly
(N = 3o —n)!N!
Therefore, by Eq. (3.8),
n nk
D 2 hayagn(ky, kas mxPix?
k1=0 ka=0
= Adx.dz;N:n
X Fy(—=n, =0y, 055 N — Z oty — 0+ 15 %1, xp)
(3.5b)

10 The substitutions are (@), = a(@a+ 1)+ (@ + k — 1), (a), =
@—14+a—-Dynfm—k)=nn—Dn—2)(n—k+1).
Let n=—a. Then nl(n—k)!=(—a)(—a—1)(—a—2)-:-
(ma—k+ D)= (—D¥a@a+ 1) - (@a+ k — 1) = (—1)¥a),.

CIFTAN

and, in general,
n  n—kyn—ki—ka - —kp_1

. cee ek
h“lr"‘.ﬂy;N(kli e akgu n)x’{l x”’
%1=0 keg=0

kp=0
= Aal."‘.a,,;N;nFl(_n, —0y, t T, =y,
N—Yoa;,—n+1;x, ,x,) (3.11)

Next we apply the same method of lowering oper-
ators to some SU, states to show how in actuality
these generalized functions arise and to give the
associated tableaux calculus. We want to demonstrate
sufficient evidence that the argument might possibly
be turned around, similar to the SU,; case, such
that, directly from the tableaux calculus, these h...
functions (and, therefore, the explicit algebraic ex-
pressions of any state of any U,) may be written down
with relative ease.

Consider the SU, Gel’fand pattern and the maximal
state for a given set of values of the representation
labels m,, i=1, 2, 3, my, = 0. To obtain the ex-
pression of the general states, we can use the explicit
expression of the semimaximal states of SU,:

|SU,, s.m.) = M, s_.én.(alza)mss(a124)m“_m33(012)m“_m“

X (ayg)™ 7 (a,) ™M (g, )™ (0),  (3.12)
M3} being evaluated as before, using the results of

Paper 1. Let
oy = My, %y = Myy — Ngg,
Xp = Mgy — Mgy, 05 = Mg — My,
Og = Mgy — Mgy, Og = My — Myg.

The general SU, state would then be obtained by

ISU,, general)

= N LY L LYmISUY, (3.13)
8.m,

where N~ is the lumped normalizing coefficient of the
lowering operators. Observing the complexity which
arises when L} is raised to a power, we abandon its
use here (we postpone the discussion of this operation
to the end of this paper) by restricting our considera-
tion to SU; states with my, = m,,. Letting

Ny = Myz — My,

Ng = Myg — My = Myg — Myy; Myg = My,

and using Eq. (15) of Paper I repeatedly, we obtain

My, My, Mgy 0

Mg Myg Mg

fl

Mg Moy

my,

=NT'xM :%n. X (E91)"*(E32)"(a123)"(d120)™
X (a12)*(a10)"(a1)™(as)* |0)

= N X (E51)"(a123)"(314)"(a1)*(as)™

X (E32)"(a120)™(as2)™ |0). (3.14a)
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But, from Egs. (2.5) and (2.6),

(E32)™(a120™(a12)™ |0)
¥ m % (a9)!
_kéo(kl)(% — k! (ag — 1y + ky)!

X (‘1124)'”rkl(a1:34)’61(‘112)“’_"‘-(-'“(013)”1~kl [0)

(3.15a)
d ! & aA3~—T n
= T (8124)(a12)" " (a13)™
(3 — ny)!
X oFi(— 1y, =0, oy — my + 1 (“—“"—) 10)
Q124013
(3.15b)

Thus,
K =N x Mgd x (a39)"(a)
~(n oy og!
X
kgﬂ(kl) (az - kl)! (a3 - n1 + kl)!
X (190 (a10)™ " (Egy) "
X (a14)“4(‘11)%(‘1134)"1(‘113)7“_"l [0). (3.14b)

Next, performing the (E,,)" operation in Eq. (3.14a),
we obtain (with ks = n, — ky — k3 — k)

(Ea)™(8104(a)"(@150)*(a13)" 7 |0)

ng ng—kg na—ka—ks

ny!

ko! kgl ky! k!

! ! k! 1y — ky)!
(o — ka)! (o5 — ka)! (ky — k)t (ny — ky — ks)!

X (10" *(a50)"*(a,)* " (an)™

X (8130)"7(@230)*(a19)" 7 |0).

Combining Eqs. (3.14b) and (3.16), we have

k3=0k3—0 k=0

(3.16)

(o2 + a3)!
(g + a3 — ny)!

(x4 + a5 + ny)! a1/ \as ag
(s + % + 1, — nz)!(al%) (22)*(a124)

X (a1 "(a10"(a1)"(a;13)™
ny ng no—ke ng—ka—ks

X2 2 2 2 hya(ksm)

k1==0 ka=01Fk3=0 ka=0
X hag,a5,k1,(n1-k1)(k2 s ks, ka, n2)

; k %
(e
b
(4T (4T

ol e L N4
Q13 Gras/ \Oy a,
(3.14¢)
where

Bayagkss n1) = (:j) (m " kl) / (“2 "'l' “3), (3.17)

K=N"x M2 x
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haa,as,kl.(nl—kl)(kz, ks, k4§ nz)
n,—ky

= (k)

(a4 + a5 + nl). (3.18)

Ry

We next show the tableaux calculus associated with
Eq. (3.16).

Consider the effect of (E,))" operator in Eq. (3.15a),
shown in Fig. 4(a), starting with the tableaux of the
semimaximal case; the m,, boundary is to be moved
into general position, between m,, and my, in accord-
ance with the betweenness condition. As in SU,, we
move the mg, boundary with my, > mg, for con-
venience without losing generality of the derived
expressions. The resulting changes in the expressions
of the involved antisymmetric forms can be read off
directly from the diagram, together with the numerical
coefficients from the 4 functions involved. Next, we
want to bring the m,, variable in the Gel'fand pattern
to its general value from the my; = m,, value. The
algebraic effect of this operation is given by Eq. (3.16),
which again can be read off from the associated
diagram, the part of Fig. 4(a) beinginvolved is enlarged
and depicted in Fig. 4(b). A study of these diagrams
indicates that the whole expression (3.14c) for the
SU, states with m;3 = my, could have been read off
these tableaux with the aid of the A function. The
generalized hypergeometric functions associated with
the L, = E, .., (refer to the Gel’fand pattern) are of
the form

n  n—k; n—-Lky
' z hal,ﬂz,"',ﬂyiN
k1=0 kg=0 kp=0

X (kys kgy oy kys m)(ug)™ - () (3.19)

{a)

| mll=m12=mlb“TaloI4mlr’

Maz mzsﬂ 4 mz-z‘i

2 3
3™ 4 B 4 |
k k
= n“" |_’1n|
a, a, | a, By —rfe— Qg g~
(b)
k=K ) == 0y — a
| My 2"‘|2='“|3 o
M 3 V343 "B Vaja 1) 3 |3]alks
4 [a] kgl kg Lk-t‘kzy-
]
ks ke
kl
n, le——n,

F1G. 4. The tableaux representing the algebraic operations that
give the general SU(4) states with m, = m,, indicating that the
expression for these states can be read off directly from these
tableaux in terms of generalized hypergeometric functions presented.
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with the coeflicients

harag, - agin(kns kas® v 5 Ky n)
N—32a
B (2) (Z) . (Z) ] _‘g :{ / (2’) (3.20a)

4 n!
= e gy X
@1,X3, ,apilN; (n - 2 k,)

a,! (N =3 a,—n)!
X I,-I(a,. — k)N k(N —Say—(n =3 k)Y
(3.20b)
where
A W—20) (N=m! 5,

a1,a3,°* *,apiNin = (N _ zai _ n)' NI
Each such (E,;,™ operator contributes to the
probability coefficient P of the state coefficients of the

type
hax.--',a,,;N(k’ Tt kp; nz) X (N - z“i). (3.22)
n;

The tableaux of Figs. 4(a) and 4(b) could themselves
have been drawn with the aid of the betweenness
condition alone. Thus the whole algebraic expression
of these SU, states can be written down with the aid
of a tableaux calculus. There remains the problem of
removing the m;3 = m,, restriction or its equivalent
in other U, states.

We want to demonstrate that the integral repre-
sentations of these hypergeometric functions show a
connection with the structure of the representations
of U,; the fractional linear transformation of a vari-
able ¢ in these functions relate to raising and lowering
operations as indicated by the following examples.

Consider the probability coefficient

hosaep(kss 1) = (;:1) (n f kl) / (“ 1‘ ’3) (3.23a)

and its two expressions, using k; + k, = n,

Hasatp(kes 1)

— (c+B8—=n)) af (=Br(—1)sy

(3.23b)

e+ 8! (a—mtk!(x—n+ D,
_@HB=n B (=ay(—my
@+ B B-miklB-nt Dy OF

MIKAEL CIFTAN

whence
(E21)n(als)u(al)p 0)
! (-3 -n ”
= (ﬂ———_n;! (a53) (‘h)lf (a)

% o (=g (—n), (azaal)k‘
ey =0 k].! (ﬂ —n + 1)k1
! a—n n
= —— (A1) (@) (a29)
(o« — n)!
% o (=B(—nh, (alaaz
ko=0 k2! (a‘— n + l)kg
which will be shown to be related to the transforma-
tion z-— z7! of ,F;:
oF1(a, b; c; 2)
_ T — a)
L'p)'(c — a)
X oF(a,1 ~c+a;1l—b+a;z7?
I'(e'(a — b) (—2)
I'(a)'(c — b)
X oFy(b,1 —c+b;1 —a+b;z7Y). (3.25)
Rewriting the above, we have

|0) (3.24a)

;309

k3
) 10y, (3.24b)

o3y,

(=2~

e (=B(—n, (alaaz)k’ 10}
ko=0 kz! (a —n + l)kz Aoy
— (x—n)! B! (%3“2)"
al (B — n)\aga,
% i (=g, (—n)y, (a23a1
k=0 Ky ! (/3 —n+ I)Iq
Identifying ~f=a, —n=b, a —n+1l=¢c, z=
Qy30,[053a, , We have
(x—m! B! - U(e) T(a—b)
al  (B—n)! T(c—0b) TI(a)
We obtain the left-hand side of Eq. (3.25) and only the
second term of the right-hand side; the first term on
the right-hand side vanishes for this identification.
The vanishing of the first term is a curious phenom-
enon (in this context) and it appears pot only in the
transformation of the variable z but also in the use of

contiguous relations in the boson-operator realization.
One can also examine the expression

(E21)n(a13)a(a1)p [0)

! ( )z f—-n 7
B—n a)’(a)™ "(az)
% < ("a)kl('—n)kl (a23al

r=0 k! (B — n + 1),

)kl 0). (3.26)

130,

kq
) 10y (3.27)

Ay3ds
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and the expression, with k; + k; = n,

(Eq)"(a15)%(a V0

!
=—= (819 "(a)) "(a1205)"
(x — n)!
n — . kg
% z(“ + B — n 4 D (—n), (a13a2) 10)
k0 kgl (x —n + 1), aya;
(3.28)
obtained by using the vanishing determinant
ajzs = 0= a1as; = ayy5 — A3ar, (3:29)
demonstrating the transformation
z—> 1 , Z= o L _ D2 - (3.30)
1—z apds 1 —2z  aya,

Again there exists the transformation of the F;
functions

.Fi(a, b; c; 2)
L')'(b — a)

== Tk

XZFI(a,c—b;1+a——b;

=)
1—2

1

1—z

| — 2 ['(c)l'(a — b)

+( I'(c — b)'(a)

x 2F1(c—a,b;1—z+b; ) (3.31)

Thus

o (=0p(=n), [asa\*
=0 k! (B — n + 1), (013‘12) 0

al (B — n)! [aa,)\"
(x—mn)! B! (alsaz)

% i(“ + B — n + 1)y, (—n)y, (alaaz)k” 10).

ka=0 kg! (a - n + l)kg a1203
(3.32)
Identifying
a= —a,
b= —n,
c=f—n+1,
we obtain
a! B—n! T@—>b TI()
= , (3.33
(e —n)! B! I'ta) I'(c—b) (3:33)

again giving the second term of the right-hand side of
Eq. (3.31), but not the first term of the same!
Although Fig. 4(b) does not lend itself to a tableau
calculus (at this point), its transformed form [Fig.
4(a)] does. This example indicates that vanishing
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determinantal identities may be used with the proviso
that the resulting expression be transformed to a
combinatorially meaningful form if the appropriate
transformation laws are known and if such a com-
binatorially meaningful result is desired.

These examples demonstrate that the boson-
operator realization itself has a deeper connection
with the integral representation of these functions;
furthermore, the boson-operator realization is a
special substructure of the structure of these functions
since only special terms appear in the transformation
of the arguments of ,F; . The same observation is made
with respect to the contiguous relation identities
wherein the vanishing determinants give restricted
relations.

In view of the importance of integral representa-
tions of these functions, we want to carry this analysis
one step further at this time. We next want to show that
these generalized .F, functions (i.e., those of many
variables) encountered above are in fact the Radon
transform*! of a product of linear forms.

Let the symbol V denote the Radon transform

A\
fEp,

J& p) = (100 — (6, ) dx,  (3.34)

of the function f(x), where

..’x")’
dx=dx1'dX2"'dxn,

x = (%1, Xp, "

with
(E,X)= Slxl + §2x2 + o + Enxn =P
denoting a hyperplane in the oriented n-demensional

real affine space. The ordinary hypergeometric func-

tion
r
2F1(d, ﬂ, 7; t) = (y)

LAy — p)
1
X L X1 — )P — tx) % dxy
(3.353)
can be cast into the ratio of two Radon transforms,
[(&5Y, x)5 (&S, xR, 071"
(&Y, x5 ER, )Y ’
(3.35b)

as follows: the denominator above corresponds to the
beta function in front of the integral, while the numer-
ator to the latter. The + signs above indicate that

2F1(a, ﬁa Vs t) =

1 1. M. Gel'fand, M. I. Graev, and N. Ya. Vilenkin, Generalized
Fuynctions (Academic Press Inc., New York, 1966), Vol. V.
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integration is to be carried over the positive “octant”
of the two-dimensional space that we shall now find.

Let x, = 1 — x; in the integrand; then the inte-
grand is

(e ) P H(L = 0%y + xo]

and the particular linear form which is the ‘“hyper-
plane” (&, x) = p. The argument of the 6 function in
the Radon transform of this function becomes

xl + xg = 1.
Denoting

&' =10, & =01 &=@-10,
the integral is cast into the particular Radon trans-
form indicated by the numerator of the ,F; function
in Eq. (3.35b). The coefficients in Eq. (3.35a) define
the beta function

DALy —

B,y — p) =L E=0

which is the special case « = 0 of the integral in Eq.
(3.35a) and therefore obviously corresponds to the
denominator in Eq. (3.35b).

Next we want to show that Appell’s generalization
of oF, functions, the F;’s that arise in the representa-
tions of U, (as demonstrated above), are also Radon
transforms of a product of linear forms.

Consider the integral representation (Ref. 8, p. 76)
of the F, function on #wo variables,

Filoa; B, 8y ts ty)

. (336)

_ I'(y)
F@T@E(y — - )
X f f xEIEH — xp — x) B
X (1 — tyxy — %) dxy dxy, (3.37a)

taken over the triangle x;, > 0, x, > 0, x; + x, < L.
Let

x3 = 1 - .xl - xg,
which defines the hypersurface
(&, x) x; > 0.

This is the triangular area, the intersection of the
hyperplane with the positive octant of 3-space, over
which the integration contributes. Thus the integral is
the Radon transform of the function

(xl)i_l(xz)i’_l(xs)z-—ﬁ_ﬁI~1
X (1 — t)x; + (1 — to)xs + x5) "
Again the gamma functions in front of the integral in
Eq. (3.37a) define the corresponding generalized beta

function B(8, 5’,y — § — #'), the Radon transform
of the beta function being obtained from that of the

=pa>X+x+x=1,
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integral by letting « = 0. Thus we have

Fl(“; ‘8’ ﬁ,’ Vit iz)
_ L&Y, 08 EPR, AR, 0P, )3

[0, R ER, D, T

where (3.37b)
(1) — (1 0, 0)’
5‘2’ = (0,1, 0),
£ =(0,0,1),

£ =1 =1, ~1), 1,
505(19 1’ 1): P=1 in (fg,x)=p

the triangular plane.

It is hoped that these connections will provide
further clues as to the possible closed form of the
explicit algebraic expressions of the general U, states
in terms of the boson-operator calculus.

Using the Radon form of the ,F; function, we can
rewrite the general SU, states with its probability
coefficient (the square of the normalization constant
N1 states) as

N7V |SUy)

1 Myp — My,
——~—~( ) oAy
Mom gy, \Mi — My
X ( a 12)m22( as)’mxa—ﬂu z( am)mza—mzz ( al)mx 1—-mzs( az)mm+mx 1

[( 5(()1)’ x)mu—mgs—‘l( 5((’2)’ x)mxz'“maz( 5((}3), x)mu—mmﬂ}v

[( 5‘()1), x)‘mxz—mza—l( 5‘(]2), x)mzs—mn]V i
where (3.38)
4. = (myg — myg)! (M — myy)!
241y = s
(my — myg + 1)1 (Mg — my)!
8=(1,0, & =00,
i0= (220 1) = -0,
AoQy3
= G193
Galys

4. THE GENERAL SU, STATES

In the previous sections the Ll operator was ne-
glected in calculating the SU, states, thereby deriving
only special cases of the general SU, states. We now
show that, starting with the semimaximal SU, states,
one can apply the (L))" operator and indeed obtain
a closed form (see Fig. 5).

%B#r%ni .}

s= g+f+ytq

Fic. 5. The simpli-
fied diagram representing
the SU(4) semimaximal
states,




COMBINATORIAL STRUCTURE OF STATE VECTORS IN U(n). II

We need to find

general\

SU / - ‘N)(Ez1)”3‘N)(-£'32)”3'N)(_L131)"1M;%n. 8U,
4
X (Eg))"(Esp)"(L3)™
X (a123)“"(‘1124)(1(5112)’3(‘114))’(611)"(%)‘s |0).
4.1)
We note that L} commutes with @53, a34, a3, a4. TO

start with, we find
L§(0124)a(a12)ﬂ(a14)y(al)" 10y
=ne+pf+y+n+1)
X (8120 (@1)%(a10)"(a)""a |0)
+ye+B+y+n+1)
X (a120)" (@1 (a10)"(ay)"azs |0)
— no(a120)° "(12)"(810)(a1)" "A10304 [0)  (4.2)

and
I'= (L;)"‘(a124)“(a12)ﬂ(a14)”(a1)” )
ny n1—k1 1
—_ _1\E n
‘,Eo,éo( ) ky! kol (g — ky — ky)!
7! y! a!
(77 —ny + k) (y — ko)l (o — ky)!
X(s—2—n)(s—2—n +1)
X(E—=2=nm+2)(—2—n+(n—k)—1)

X (a120) N (ar2)(a1s)" "(ay)"

X (@12300)(@30)*(a5)" 72 |0). (4.32)
Noting that the product over the factors having s is
I's—=2 (="
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where we have used
_Ta-k_ (=1 45
@s="ta “a-ay @
we obtain
| = I'(s—2) 2 (_nl)k1+kz(_a')k1(_y)k2

T(s — 2 — n) s & kil ko! 3 — ) (7 — 1y + D,
x (2]t (200, 4

as3Qy9/ \d3dyg
Fz(—nl; —a, —¥;

I'(s—2)
T I(s—2—ny)

3— s, —ny 4 1; 2% “1“34) 0y, (4.3¢)
As3dy24 Q304
But
Fooa; 8,859, 95 t1, 1)
L'

T T@TET — TG — p)
xf f XL — X)L — x,) A
(4.6a)

over the triangle x; > 0, x, > 0, x; + x, < 1. Let
x3 =1 — x; — x, as before; the integral is then the
Radon transform of

A O A N s
X (1 — )% + (1 — t)x; + x5)7"
The gamma functions in front give the inverse of the

X (1 - tlxl - t2x2)—a dxl dx2

product of two beta functions. Therefore,
)ﬂ _1(5(:;) —p 1(5‘()4)’ )+—ﬂ _1(5[(,5), —a]V

—2—n ity = 44
¢ It i 2y G
Folos 8,857, v s s ty) =
2 15 b2 [(Em
where 0 = (1,0, 0,
‘2’ =(0,1,0),
33’ =(0,1, 1),
¥ =(1,0,1),
G =1 —1t,,1—t,1).
eneral _ _ _
gbU4 > - ‘N)(E?u)"a‘N’(El'sz)"z‘N)(I}sl)”l

ﬂ—1(§(2) )ﬂ —1(5(3) )Y—ﬂ—l(EM) )1—13 1]

-1
sm. SU,

, (4.6b)

In fact all F;, F;, and Fj type functions can be cast
into Radon forms.

The other two lowering operators (Ej,)" and (Ey )",
when operating on the F, function above, produce, as
before, an ,F; function and an F; function on three
variables, respectively and in that order; we obtain

'y + 1 —n + ny)!
(m—n)l(y + 1 —ny+ ny — ng)!

X (a123)“0(‘14)6(‘1124)6!(‘112)’1—71Z(alAi)y(al)"_m(as)nl(al:;)nz—m'(aza)n3

ny ni—k; na

ng n3—~kg ny—ka—ks

1 (— "1)k1+k2( — “)kl( - V)kz
xkgchohz_o kam 0ksz_o 62—: (=1 kilky' (g — ny + 1),
(¢ — ki + B)!
X($—2—ny)pyp X ha‘_1 ks n
( Dni—k —Ft f—n (a—k),p(Ks3 N2)

X h(‘/—kz),('1—"1+k2)’7c3,(n2—k3)(k4 P k5 » kss ns)

k1 L3
x (040123) (014332(012‘1134
A3z, aza; A139124

ks Vd 3 o
) (%3“24) * <a2a13) ® <¢113‘1234 ¢ (0)
*
A14Q23 G183/ \Qg3ly3

(4.6¢)
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where
s=saet+f+y+n

Each h function above by itself gives a Radon
transform. To see if this whole expression can be put
into a “folded” single Radon form, we investigate the
“semi-semimaximal”’ SU, states, i.e., the states with
only my, = my, and the rest of the my’s in general
position in the Gel'fand pattern. The relevant parts
give the sum

(— nl)kﬁ—kz( - V)ka( - "2)k3('— a)kﬁ»ka
E%%kll kylks! (3 = 8)e,(n — ny + D), (8 — na + 1),

X ¥ k.
a,a 1/ia,a 2 (Ay0d134\ 2
x ( 4 123) ( 1 34) ( . (4.72)
A3/ \A3A14/ \Od138124

Casting this into general form and using the identity

(d)l+m = (d + l)m ’ (d)ls (48)

we obtain

(a)l+m(b)m(c)n(d)l+n il.m_n

2 2 2 N
_ (a)l+m(b)m(d)l I m (C)n(d + l)n n
=22 e 2 ke, -

(4.7v)

_ 1 (a)l+m(b)m(d)l I . m
= B s -— —_—
8 =9 2 D

1
X f w1l — w1 — zw) ™t dw (4.7¢)
0

-1 ! (a)l+m(b)m(d)l X m
=B , g —
€89 2 2 (1 = o’
X (W) — w) (1 — zw) %dw (4.7d)
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= BYc, g — ¢)Bd, e — d)B(b, f — b)

1,101
X f f f ud—lvb—lwc——-l
0 Jo JO

X (1 — u)e—d—l(l _ v)f—b—l(l _ W)g_c_l

x (1 — zw)"’(l — — yv) du dv dw.

(4.7¢)

It remains to be seen if this integral can be cast into
a Radon form.

At this juncture it is appropriate to note that the
oF; function, which appears first in SU; at the U,
sublevel as a result of the application of the U,
operator Ey, is a Radon transform over a line
segment, the group-theoretic fundamental region of
U,. Similarly, in SU, we find the F, function gener-
ated by the lowering operator L} of the U, sublevel,
this function again being a Radon transform but now
over a triangular plane surface, the fundamental
region of Us. These examples are indicative of the
connection of such generalized hypergeometric func-
tions to the geometry of U,,. It is our contention that
when this connection of the generalized functions to
the underlying geometry is clearly established, a
true insight shall be gained to the otherwise arbitrary
manipulations and generalizations of functions that are
of particular importance in physics.

1 —zw
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We show that the many-fermion ground-state energy with an attractive potential has a critical singu-
larity. This singularity destroys the validity of “‘low-density” approximations. We also find that the
K-matrix formalism is, in principle, not applicable to attractive potentials because of the presence of
“Emery singularities.” We introduce an R-matrix formalism which is numerically very close to the
K matrix and free from manifest ‘‘Emery singularities.” A model calculation is performed on the lattice
gas to try to anticipate what quality of results can be expected from summing an R-matrix expansion

with fixed density.

1. INTRODUCTION

In mathematical terms, the problem of the ground-
state energy of a many-fermion system, when viewed
in the context of perturbation theory, is simply a
problem in series summation. All we are in fact given
by perturbation theory is a power series in the po-
tential strength. One can break down the contribution
to each power in various convenient ways, but it is
really only the total contribution to each power which
is significant. This series summation problem is
complicated by several features. In the first place, the
series is very probably divergent and at best asymp-
totic.! In the second place, every term in the series is
divergent for infinitely hard-core potentials, which are
physically acceptable. So we must resum the series to
allow this case to be dealt with. For purely repulsive
potentials this resummation has been accomplished
in a satisfactory manner by means of the summation
of all ladder diagrams. It has been rigorously*3
proved that for purely repulsive potentials the ladder
energy is free of singularities in the range of strengths
0 < v < co. In the presence of attraction, as we note
below, the resummation to treat hard-core potentials
is not so simply handled. Finally, the location, or
even the existence of singularities, which may occur
at various points in the potential strength-density
plane, has not received the careful attention it deserves.
The location of such singularities is of crucial
importance to any program of series summation, as it
is well known that the nearest one limits the radius of
convergence of a Taylor series. No program which
has as its goal the calculation of the ground-state

* Work performed under the auspices of the U.S. Atomic Energy
Commission. Preliminary report of part of this work given to the
American Physical Society, April 1967. Bull. Am. Phys. Soc. II
12, 594 (1967).

? G. A. Baker, Jr., Phys. Rev. 131, 1869 (1963).

? G. A. Baker, Jr., J. L. Gammel, and B. J. Hill, Phys. Rev. 132,
1373 (1963); hereinafter called I.

3 G. A. Baker, Jr., B. J. Hill, and R. J. McKee, Jr., Phys. Rev.
A1385, 922 (1964); hereinafter called II.

energy of a many-fermion system can hope to be
successful until it has taken account of at least the
closest such singularities. In particular, it is widely
recognized that in many ways nuclear matter, for
example, is very much like a liquid drop and that the
ground-state energy-vs-density curve should have a
flat portion for low density corresponding to a con-
densed nucleus which does not fill the whole volume.
The saturation minima obtained by approximate
schemes have been represented as analytic continua-
tions of the high-density portion of the curve. How-
ever, the logical consequences of the liquid aspects of
the nature of a many-fermion ground state must be taken
into account. (We do this in Sec. 2.) From the theory
of liquids and gases we expect, and indeed find, that
there will be a potential strength for which the
densities of the liquid and gaseous phases of the
many-fermion system, interacting through an attrac-
tive potential with a strong repulsive core, will
become equal and a phase separation will cease to be.
At this point, called the critical point, the theory of
liquids and gases (and of cooperative phenomena in
general) tells us there is an analytic singularity. This
situation is in sharp contrast to the situation for a
purely repulsive potential, where a low-density ex-
pansion? proves to be satisfactory because of the
absence of a liquid-gas critical-point singularity. The
presence of the critical singularity renders inadequate
(as in classical statistical mechanics) approximation
procedures based on the assumption of low density,
since the ground state lies on the liquid side of the
coexistence curve. A low-density expansion is blocked
off from the liquid side of the coexistence curve by
having to pass through the two-phase region, where
the curves are flat. On the other hand, if one tries an
expansion in terms of the number of interacting
particles, which is accurate both for low density and

4 G. A. Baker, Jr., Phys. Rev. 140, B9 (1965); hereinafter called

1II.

1647



1648

weak interaction, one may again have trouble as the
critical-point singularity lies directly between the ori-
gin in the density—potential-strength plane and the
liquid side of the coexistence curve. We propose a
resummed potential-strength expansion at fixed density
which will avoid the critical-point singularity. As the
necessary calculations on the quantum many-fermion
ground-state energy are quite lengthy, we have chosen
to illustrate our procedures by some analogous model
calculations on the lattice gas. Current theory of
critical phenomena indicates that this model has the
same type of singularity structure and thus retains the
relevant features concerning a critical singularity,
two-phase region, and the like. Hence this model
should form a proving ground for our proposed method
of calculating the many-fermion ground-state energy.

Using available data, we are able to locate the
coexistence curve reasonably accurately and to eval-
uate the free energy (analogous to the ground-state
energy) thercon fairly accurately. The outlook is
hopeful that sensible results can be obtained with the
fewer terms which are likely to be available for the
expansion of the energy in the many-fermion problem.

In the third section we investigate other possible
singularities. We find that the “Emery singularities,”
in principle, fill the kz-potential-strength plane when
there is any attraction present at all. We do not believe
that these are real singularities in the energy, as
ordinary macroscopic-sized systems do not appear to
be a close enough approximation to an infinite system
to possess them. Rather, they appear to represent an
unfortunate choice of a method of summation of a
series which is known to be divergent.! We introduce
an alternate procedure (R matrix) which is numeri-
cally very close to the Brueckner® K-matrix method,
but free from the “Emery singularities.”

By analysis of the singularity structure of the R
matrix, we predict that 3He does not have a superfluid
phase.

2. THE CRITICAL POINT OF A MANY-
FERMION SYSTEM

In this section we will be concerned principally with
interparticle potentials which have a very strong
repulsive core surrounded by a purely attractive
potential of finite range and depth. Although we are
concerned in this article exclusively with the ground-
state energy of a many-fermion system, it is some-
times helpful to understanding to consider a problem
in the context of a larger one. This we shall do here by

5 V. J. Emery, Nucl. Phys. 12, 69 (1959).
¢ See K. A. Brueckner, in The Mary-Body Problem, C. de Witt, Ed.
(John Wiley & Sons, Inc., New York, 1959), pp. 47-154.
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FiG. 1. Sketch of a typical pressure-volume diagram for a liquid—
vapor system. The dashed line is the coexistence curve.

introducing a temperature. The ground state will be
recovered in the limit as the temperature goes to zero,
with the other relevant variables fixed.

Interacting systems with interparticle potentials of
the general type we are discussing are quite common
in nature and have been much studied. The situation
for nuclear matter, the understanding of which is one
of the goals of this study, is seemingly unique in that
itis a quantal Fermi system whose density is quite low
compared to close-packed density. However, we shall
argue that these features are merely details and that
the reasonable expectation is that nuclear matter will
fit into the general picture of cooperative phenomena.

One of the most striking properties exhibited by
an extremely wide variety of matter in bulk is that of
change of phase—the boiling of water to form steam,
for example. This phenomenon occurs at normal atmos-
pheric pressure. As we increase the pressure, the tem-
perature and density of the steam increases; finally, at
a critical point (p,, T,, p,) the density of water and
steam become the same, and for higher temperature
(or pressure) there is no longer a change of phase.’

As one approaches the critical point from (for
instance) higher temperature, various manifestations
of the impending phase separation appear. A typical
p-V diagram is shown in Fig. 1. The dashed line is the
coexistence curve. For example, the density fluctua-
tions become very large when a liquid and its vapor
are in equilibrium with each other below the critical
temperature at the same pressure. (They have different
densities. In the absence of gravity one expects to
find various droplets of liquid dispersed throughout
the volume.) This phenomenon is experimentally

* For a good recent review of the equilibrium theory of critical

phenomena, clearly presented, the reader is referred to M. E.
Fisher, Rept. Progr. Phys. 30, 615 (1967).



CRITICAL-POINT SINGULARITIES

manifest as critical opalescence, i.e., the substance
becomes cloudy.

Another type of system which displays an exactly
analogous behavior is a ferromagnetic crystal near its
Curie or critical point where spontaneous magnetiza-
tion suddenly appears. Here the zero-field magnetic
susceptibility becomes infinite at the critical point.
One salient feature observed of critical points is that
the singular physical behavior is represented by an
analytic singularity in thermodynamic properties of
these systems. A consequence is that a limit is set on
the radius of convergence of ordinary perturbation
theory by the existence of such a singularity. Any
serious attempt to calculate the properties of many-
fermion systems must consider the possibility of such
a singularity and take account of it.

The argument that systems such as nuclear matter
possess a two-phase region is quite straightforward.
We start from the assumption that the many-fermion
system is spatially homogeneous and that the energy
is an analytic function of the density; then we show that
this assumption leads to a contradiction. Consider a
potential with a hard core plus an attractive part of
strength, A = 1 —e, € > 0, where A = 1 is the strength
required to produce a two-body bound state of zero
energy. We will suppose that the pair-interaction
volume is much larger than the hard-core volume.
(In the nuclear case the range of interaction is at
least 24 times the hard-core diameter® or a ratio of
more than 15 in volume.)

We can now imagine a configuration in which
there are up to six interacting pairs per particle (face-
centered cubic arrangement) without an appreciable
increase in the kinetic energy per particle. Conse-
quently, we expect to be able to obtain a negative
many-body ground-state energy at a suitable density
because of the relative many-body enhancement of
potential energy over kinetic energy.® (This effect is
evident in the nuclear case from an examination of the
experimental binding energy per particle among the
light elements.!®) However, it has been shown*1! that

8 See, for example, J. L. Gammel and R. M. Thaler, Phys. Rev.
107, 291, 1337 (1957).

¢ A more nearly rigorous proof can be given by dividing space
up into equal cubes, each containing, say, 3 or more particles. If
we then impose zero boundary conditions along the cube boundaries,
we have restricted the class of wavefunctions allowed and hence
possibly raised the ground-state energy. If we now drop the attrac-
tive intercube interactions and thicken the walls to take account of
the intercube repulsive interactions, we reduce our problem to a set
of finite problems which give an upper bound to the energy of the
complete problem. The application of variational techniques [see,
for example, N. Austern and P. Iano, Nucl. Phys. 18, 672 (1960)]
now suffice to establish a negative eigenvalue for some intermediate
density.

10 See, for example, J. M. Blatt and V. F. Weisskopf, Theoretical
Nuclear Physics (John Wiley & Sons, Inc., New York, 1952).

11 K. Huang and C. N. Yang, Phys. Rev. 105, 767 (1957).
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F1G. 2. Sketch of energy vs volume for the ground state of a many-
fermion system with attractive forces present.

for very low density

(Fre) = b+ okt +,
where k5 is the Fermi momentum and is proportional
to the cube root of the density. Hence the energy is
positive at very low density. By choosing 4 =1 — ¢,
the scattering length a is finite; although it is infinite
for A =1, which would vitiate this argument at that
potential, a is finite and analytic for all 0 < 41 < 1.
For high densities the energy per particle becomes
indefinitely great as the available amount of attraction
per particle is bounded (because of the hard cores and
finite range and depth), but the repulsive kinetic
energy from restricting the available volume is not.
The energy curve for a spatially homogeneous system
must look like Fig. 2. We shall assume that the
energy curve varies continuously with temperature as
T goes to zero for fixed density.!

We now use the following rigorous result of statis-
tical mechanics. The Helmholtz free energy (per
particle) is convex,1%:14

W(T, 3(v, + vp)) < V(T, v) + $¥(T,0), Q2.1

with continuous derivative for all (nonzero) tempera-
tures. The Helmholtz free energy?® is defined as

¥ = E — TS, (2.2)

where E is the internal energy (per particle), T the
absolute temperature, and S the entropy (per particle).
Now the entropy per particle!® diverges to plus
infinity like the logarithm of the volume in the limit
of large volumes. We may now pick a temperature
small enough so that, for all volumes in any given
range between a lower limit greater than the jamming
volume and less than some finite upper limit, ¥ is

12 See the proof by J. M. Luttinger and J. C. Ward, Phys. Rev.
118, 1417 (1960).

13 D. Ruelle, Helv. Phys. Acta 36, 183, 789 (1963).

14 M. E. Fisher, Arch. Ratl. Mech. Anal. 17, 377 (1964).

15 See, for example, P. S. Epstein, Textbook of Thermodynamics
(John Wiley & Sons, Inc., New York, 1937).

18 T, L. Hill, Statistical Mechanics (McGraw-Hill Book Co., Inc.,
New York, 1956).
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Fic. 3. Free energy vs volume for a low-temperature many-
fermion system with attractive forces present. The dashed line is the
convex hull or two-phase portion.

within any preassigned distance of E as the entropy is
bounded in that range. In the low-density (large-
volume) limit for any T > 0, however, ¥ tends to
— oo because E is bounded and S - +co. This
argument establishes a region where ¥ is positive.
Therefore, the Helmholtz free energy under these
assumptions fails to be convex, which is a contra-
diction. We conclude that the ground state is not one
spatially homogeneous phase. We may, however,
construct a convex ¥ by taking the convex hull of the
spatially homogeneous ¥, i.e., by drawing the tangent
line across the re-entrant portions, as in Fig. 3. This
tangent line is realized by a two-phase system of
suitable proportions of spatially homogeneous sys-
tems at densities 4 and B to construct the required
intermediate density.

Let us now consider our system at very high tem-
perature. By the correspondence principle,'” quantum
effects become negligible and we may consider classical
behavior. The attractive interaction energies, having
a finite maximum, become inconsequential compared
to the kinetic energies, and hence the possibility of a
liquid-vapor-type phase change ceases to exist'®: if we
imagine a liquid droplet formed, the attraction would
be too weak to bind a particle having even the average
kinetic energy and hence the droplet would immedi-
ately evaporate. We concluded, therefore, that, as
there is a two-phase region for very low temperature
and no two-phase region for very high temperature,
there must be a positive least-upper bound to tempera-
tures for which two phases are possible. This tempera-
ture we call the critical temperature. Although we
recognize that the boundary of the two-phase region
could have a flat top (up as in Fig. 1), we will continue
to treat the simpler case where the top is a single point,

17 E. Wigner, Phys. Rev. 40, 749 (1932).

18 There may still be a solid—fluid phase change at high density on
account of the hard cores, but we are not presently concerned with
this. See D. S. Gaunt and M. E. Fisher, J. Chem. Phys. 43, 2840
(1965).

G. A. BAKER, JR.

, AND J. KAHANE

which seems to be the usual circumstance observed in
many analogous cases.

Having established the existence of a critical tem-
perature, we may ask how its location varies as a
function of the strength of the attractive part of the
potential 1. For weaker 4 there is less binding energy
available and a stronger tendency for droplets to
evaporate. Hence the critical temperature decreases as
A decreases. When 1 is zero (hard cores only), there
is no possibility of a liquid, as a droplet would have no
binding energy at all.

This argument implies the convexity of E at T =0
(except for a possible order-disorder transition at
higher density). Hence, interpolating between 4 = 0
and Fig. 2, there must be a greatest-lower bound to
A’s which have nonconvex E vs v curves under the
spatially homogeneous constraint. Consequently,
there exists a critical potential 0 < 4, < 1 for which
the critical temperature is exactly zero. There is a
corresponding critical density p, (or perhaps a range
of densities). The significance of this critical point
(4, pe) in the (potential-strength—density) plane for
fixed temperature (zero) is, as explained above, the
reasonable expectation that it must be an analytic
singularity, as is every other known critical point.
We defer a discussion of the close similarity of known
critical points to Sec. 4.

From the foregoing discussion it is plain that the
ground state of such a many-fermion system is a
cooperative state which can rightly be considered as a
liquid.’® Approximation procedures based solely on
the assumption of a dilute gas-like system are not
adequate as the density, rather than being low, is
higher than critical density, which is the relevant
density for the importance of higher-order cluster
interactions.

3. OTHER ANALYTIC SINGULARITIES OF THE
GROUND-STATE ENERGY

In a previous paper* we argued that the analytic
singularity in the energy as a function of potential
strength which occurs when two particles are just
bound (deutron for the nuclear case) continues to
nonzero density and, in fact, forms a monotonically
increasing curve in the kz—4 plane. The analytic struc-
ture of the ladder approximation to the energy as a
function of potential strength for fixed density was
established.®* That such singularities should exist has

1% For a description of the Bohr liquid drop model of the nucleus,
see, for example, R. D. Evans, The Atomic Nucleus (McGraw-Hill
Book Co., Inc., New York, 1955), Chap. 11, Sec. 3. The successful
aspects have long been recognized to be the bulk properties, surface
energies, separation energies, etc., which one would expect from
either a classical or quantal liquid, which are, of course, just the
aspects relevant to the present discussion.
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long been recognized.>* The relevant question, in so
far as a study of the ground-state energy of a many-
fermion system is concerned, is their location (in the
kz—A plane) relative to the coexistence curve. If none
of these singularities lie in the one-phase region, then
they are, in principal, no impediment to the calcu-
lation of the ground-state energy. If, on the other
hand, they intrude into the one-phase region, then
they proscribe the calculation of the ground-state
energy there. We have argued in the previous section
that, for the type of potentials we are considering
(see Sec. 2), the many-body effects which enhance the
potential relative to the kinetic-energy contributions
cause the many-body binding energy per particle to
increase when the number of particles in the system
does. Consequently, a weaker potential is required
to cause a given binding energy per particle for a
larger system than for a smaller one. Therefore we
expect the two-body bound states which cause singu-
larities in the ladder approximation to occur for
stronger potentials than saturation.

We can give significance to the low-density terminol-
ogy of bound states by a discussion in the presence
of a Fermi sea in terms of spatial homogeneity. In the
low-density case the normalization of the wavefunction
when two particles are close together (in a “bound”
state) is proportional to v~* (v is volume), instead of
1/v, as it would be if they were uncorrelated. This
region will persist as we increase the density of the
surrounding Fermi sea. The effect of the presence of the
Fermi sea® is to prevent the occurrence of most of
the low frequencies in the wavefunction. They* say
that it “heals” quickly; however, the amplitude of the
“healed” (undisturbed frequency) portion of the
wavefunction will differ from that of the unperturbed
wavefunction when there is a spatially inhomogeneous
portion present, as there will be a nonzero fraction of
the total normalization in the correlated portion.
As the density of the Fermi sea is increased, finally
one must use such high frequencies (high kinetic
energies) to construct the wavefunction that it be-
comes energetically unfavorable as compared to the
spatially homogeneous state. (See Fig. 4 for the path
followed in this argument in the A-kj plane.) Since
the 3-, 4-, etc., body scattering matrices appear*® as
part of the energy expansion, one finds the same
phenomena there as in the two-body case. An analytic
singularity will occur in the n-body scattering matrix,
where the spatially inhomogeneous case (normaliza-

20 R, Balian, The Many-Body Problem, C. Fronsdal, Ed. (W. A.
Benjamin, Inc., New York, 1962), p. 286.

3 L. C. Gomez, J. D. Walecka, and V. F. Weisskopf, Ann. Phys.

(N.Y.) 3, 241 (1958).
22 H. A. Bethe, Phys. Rev. 138, B804 (1965).
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ke

FiG. 4. Path in the 4 — k, plane which leads to the occurrence of
a spatially inhomogeneous (two-body) portion of the many-body
wavefunction. The jagged line is a line of singularities (fixed ),
tion of the wavefunction when all particles are remote
from each other decreases) becomes more favorable
than the spatially homogeneous case. If we consider
the limit as n becomes infinite for the n-body scattering
matrix in a sea of fixed density, the location of
the singularity will be the coexistence curve—as the
breakdown of spatial homogeneity (one phase) is the
definition of a liquid—vapor coexistence curve. Con-
sequently, we conclude that the coexistence curve is a
limit point of singularities of subsequences which
occur in the complete energy. Fortunately, as we have
discussed above, the limit, for potentials of the sort
we are treating, is approached from the more strongly
attractive side, and we are not barred, in principle,
from computing the energy on the coexistence curve
from the less strongly attractive side.

Whether or not the coexistence curve is a line of
singularities of the analytic function

Ekgp, ) = z lim ye, A", 3.1
- n=0 N—= o
as well as
E (kg, ) = lim 2 NERA"S (3.2)

N—-+w n=0

is clearly of crucial importance to any attempt to
compute the energy on the coexistence curve. Kat-
sura® has examined a classical model and shown that,
in spite of Yang and Lee’s* results on (3.2), it is
doubtful whether the singularity of (3.1) coincides with
the irregular point of (3.2). One of us® has given
numerical evidence to indicate that, except at the
critical point itself, the coexistence curve does not
contain singularities of (3.1) at least for the nearest-
neighbor, Ising-model lattice gas. Katsura®* has gone

23 S. Katsura, Progr. Theoret. Phys. (Kyoto) 11, 476 (1954); 23,
390 (1960), and references therein.

24 C. N. Yang and T. D. Lee, Phys. Rev. 87, 404, 410 (1952).

25 G. A. Baker, Jr., Phys. Rev. 161, 434 (1967).

26 S, Katsura, Progr. Theoret. Phys. (Kyoto) 13, 571 (1955); also
see his review article Advan. Phys. 12, 391 (1963).
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even further for the long-range, Huisimi~-Temperley
model and proved that the coexistence curveis notaline
of singularities. Saito®” shows that the singularities of
(3.1) very likely correspond to the end of supersatura-
tion. By a method of an electrostatic analog with the
use of image charges, he demonstrates for the Huisimi-
Temperley model that the critical point is the only
singularity on the coexistence curve. This result is in
accord with our numerical results mentioned above
for a different modei.

To illustrate these results we have calculated the
ladder approximation to the energy by the usual
methods.? The location of the singularities are deter-
mined as the nearest zero of the determinant of the
matrix approximation to the integral equation [Eq.
(5.9) of I] for the wavefunction. This zero will be an
approximation of the edge of the cut derived pre-
viously [Eq. (4.18) of I1I].

In order to locate which values of the parameters
correspond to the singularity, we start with a differ-
ential form of the K-matrix equation [(3.8) subject to
(3.3) of I1]:

[H, + AV]ow =Ko (3.3)
with H, the relative coordinate kinetic energy and V

the potential energy when the wavefunction w must
be expanded in terms of

exp [ik.r],
13p + k| > kp, WBp—Kki>kp.  (34)
The p and k are given in terms of the two-hole
momenta m and n as

k=4m—n), p=m+n. (3.5)

Inspection of (3.3)-(3.5) reveals that the smallest
energy gap between the right-hand side of (3.3) and
the smallest |k| allowed by (3.4) to be closed by the
attractive part of the potential to form a ““bound”
state occurs when

jm| = |n| = kg. (3.6)

Hence the usual K-matrix equation (in terms of a
coordinate-space wavefunction) becomes?

() = julkr) — 2 f " Gy YV (7))

3.7
where, for condition (3.6),
kptkp'—k%)? k" dk”
G X r/ = L] k” 3 kll 7
(s ') . 2——‘—(k2F _ kz)éh( rYjik"r’)

’ k”2 dk” y " . "t
+fkp+<kpﬂ_k2,} mh(k P jk'r).
(3.8)

27 N. Saito, J. Chem. Phys. 35, 232 (1961).
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The limit as k — k5 requires special attention. In
fact, we will find it necessary to reorganize the sum-
mation of the energy series on this account. In addition
to the clustering-type singularities previously men-
tioned, there also occur “Emery singularities.” Emery
has shown®-?® that a singularity occurs when

kplvly) =0,

where y is the solution of an integral equation with
G(r, r’) replaced by [Eq. (42) of Ref. 5]

=G+ {kg| vGu |kp)

(3.9)

F= otk P!
_ Golkp)kpl  kp)kg| vG
(kplolks)  (kplolkg)’
ly) =tk — Foly), (3.10)
where
G 1y = 2 [ Kilkrdler') — Kpjilegm) k)
T Jbp k® — k%

(3.11)

and |kg) = j(kpr). These singularities of the ladder
series, in general (for the type of potential we are
considering), occur for weaker potentials than do the
clustering type (k = 0). In the low-density limit, (3.9)
corresponds to®

tan 8,(k) = 0, (3.12)

where &, is the phase shift of the corresponding
Schrodinger equation. If we use a potential

r<e,
c<r<d,
d<r,

v = +o0,
= —W,
=0,

(3.13)

then it is easy to compute asymptotically for / large
that

2
tané,(k)oc——m—
@l 4+ 3
C2l+1 1d2Wm
- 2041 4+ = . (3.14
w(o) [rerese) e

For large / the first term dominates as ¢ < d, forcing
tan d,(k) negative no matter how weak W may be.
Thus, at low density the ladder series has an “Emery
singularity”” for / large enough with any attractive
force at all. We have followed these singularities
numerically to higher density, and while they move
to stronger potentials with increasing density, as we
expect, there is always another for high enough / so

28 V. J. Emery, Nucl. Phys. 19, 154 (1960).
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that the entire attractive potential region of the
(kp, A) plane is filled with “Emery singularities” of
the ladder series.

However, these results do not tell the whole story.
If we examine the rate of approach of the potential
V,(k) for which we have a singularity to V,(ky), we
find that

Vik) ~ V(kp) — wf[log (1 — kfkg)]-

As [ increases, so does w. The region in which V,(k)
is lower than V,(0) is very tiny.

For example, from the relation between k5 and the
volume per particle we can compute that the average
level spacing is

dN|dky = 3N[kg,

(3.15)

and hence we expect, for a macroscopic sample, that
the smallest that the argument of the login (3.15) can
be is about 1024, We have computed the singularity
curve of the K matrix for a potential with a hard core
and attractive square well [see Eq. (3.43) below] for
b =4a. Inthatcasefor/ =0, kr = 1.0, V,(0) ~ 4.3,
there is a maximum near k/kz = 0.7 of ¥,(0.7) ~ 10.2
and V(1) = 3.2. However, for a macroscopic-sized
system V(1 — 102)~ 4.0, a long way from the
limit as kK — k! As [/ increases, the strength of po-
tential needed to cause a singularity is generally more
attractive, except for k = ky, where, as we saw, it
is less so. The region around k = kg, where V (k) is
less than V,(0), decreases in size very rapidly. It is
hard to ascribe much relevance in the physical world
to a phenomenon which seems to require a much vaster
than normal macroscopic-sized system for its existence.

Brueckner and Gammel®® made the simple approxi-
mation of adding a small excitation energy to the
denominator of the Green’s function [our Eq. (3.8),
for example] as a numerical expedient to prevent an
infinity in their numerical work. We have checked that
this procedure has the effect of moving V,(ky) well
above (in most of the type of cases we are considering)
V,(0).

We know very well that for certain potential shapes
(potential of one sign) the energy is indeed singular in
the presence of any attraction at all—the well-known
nuclear collapse problem. This consideration suggests
to us that the ladder series may be giving a “shape-
independent”” approximate description of the nuclear
collapse phenomenon.For the potentials we are con-
sidering, we know that it is the “excluded-volume”
effect of the hard cores in the many-body problem
which prevents this collapse. (In any event, it does not
seem relevant to the size of systems we are attempting

29 K. A. Brueckner and J. L. Gammel, Phys. Rev. 109, 1023 (1958),
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to treat.) We therefore conclude that a different
summation procedure than those based on the K
matrix is required to make a valid singularity-free
calculation of the many-body energy.

We propose to rearrange the energy series in
powers—not of Brueckner’s K matrix as has been
done, but in powers of a closely related matrix which
we will call R. The reason that the ordinary potential-
strength expansion was rearranged into powers of K
was to enable one to treat potentials with an infinite
repulsive core. This feature must clearly be retained.
The usual K matrix (in ladder approximation) is given
by (5.7), (5.9), and (5.10) of I. They are

Kyk) = 727fwj,(kr)V(r)ukl(r)r2 dr, (3.16)

where

. 2 [
up(r) = jilkr) — ; J; Gu(r, ) V(r’)ukl(r,)rl2 dr’

(3.17)
and

Gylr, 7) J k"2 kﬂfﬂ_r)lik”_')

k”2

with p the center-of-mass momentum, k the relative
momentum, j,(x) the usual spherical Bessel functions,
and F(p, k") a function which represents the effect
of the Pauli exclusion principle. The low-density
limit of the many-body energy

F(p, k") (3.18)

AE = dk d
@) H P
Bptkl<ir
p—xl<kp
1 | even
X 21+ 1 K, (k 3.19
Sel+ )(3 l Odd) () (3.19

has been shown*!! to be proportional to the scattering
length

a = tan 6y(0) =J‘OOV(r)u00(r)r2 dr. (3.20)

This result corresponds to the standing-wave normal-
ization for the wavefunction.®30
If we introduce the Green’s function

Sylr, rl)
dk” [k"%u(k"r)jk"r") — K%ji(kr) ji(kr)]
ku2 k2 4
then there is no singularity in the integrand at k" = k.

We may, following usual procedures,? evaluate (3.21).
It is

(3.21)

Sp(r, r')y = _ka(kr<)nz(kr>) (3.22)

32 T. Y. Wu and T. Ohmura, Quantum Theory of Scattering
(Prentice-Hall, Inc., Englewood Cliffs, N.J., 1962).
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where r_ and r_ are the lesser and greater of r and r’,
respectively. This is exactly the standing-wave®
Green’s function. The form (3.21) is well defined for
all k’s and is also suitable for the inclusion of the
Pauli exclusion principle. We therefore introduce

Gu(r, )
~[Cae [k Sk ) 'r) = Kkn)ihr)] o
0 k”2 - kz
+ a(p, k) j(kr)jlkr'). (3.23)
Form (3.23) of G can now be well defined for all k

and p, not just those in the Fermi sea as was the case
for (3.18), by extending the definition of F(p, k") to be

F(p, k) =1, Ip—ky> K,
=0, (k2 + 1M <kp,
=1, k" —4ip2>kp,
KTy -

, oOtherwise.
kl!p

(3.24)

The second term @(p, k) is arbitrary provided it
vanishes when kp does. We choose @ = k?lky, (k <
ky) as a simple function which minimizes the differ-
ence between G and G.

We wish to expand the solution of (3.17) in terms of
the solution of

~ . 2 @ ~ ’ A4 AW, !
) = ikr) = 2 [ “Gutr, V@I ar
(3.25)
To do this, we observe that (3.17) can be rewritten as

() = Aj(kr) — 2 f " Glr, PV Yy dY,
mJo

(3.26)
where

2 [ k*dk”
A=1+%
+ W[J:) krl2 _ kZ

F(p, k") — (p, k)]

x [ ﬁ "1 YW Y ) dr'] (3.27)

Thus, solving for 4, we get

© -1
A= l:l + l(~r1 - 2ﬁ)f Fkr YV ()i (rHr'? dr’]
m 0

(3.28)
where we use the notation of I11:
) k2 dk” .
T = T F(p, k). (3.29)
Hence,
U (r) = Ady(r) (3.30)
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and
Ry(k)
1+ (3 — DRK)’

where we define the diagonal elements of the R
matrix as

R(k) = 2 fwj,(kr)V(r)ﬁkl(r)rz dr.  (3.32)

K(k) =

(3.31)

The Emery singularity arises in (3.31) if R, < 0, as
7, can be arbitrarily large. From (3.31) the expansion
of K;(k) in powers of the R matrix is quite straight-
forward:

Ky(k) = R(k) — (37, — O)R(k)
+ @ — @R + -+, (333)

If we substitute (3.33) into (3.19), then, as 7, diverges
only logarithmically, the integral of every power is
convergent; hence the expansion of AE (ladder) is
well defined in powers of the R matrix, provided R
itself is defined. The coefficients of the expansion, of
course, are divergent like (n!). This divergence is the
same as that for K in powers of V*. This similarity in
divergence rates follows from the fact that, as
G(r,r")V(r') is bounded for V(r) bounded and of
finite mass, R must have a finite radius of convergence
when expanded in powers of the potential strength.
In the low-density limit we see that R has the standing-
wave singularity of tan d,(k). These are well known to
correspond to the occurrence of a two-body bound
state.

To inquire whether the complete energy series can be
resummed by this procedure, we have examined the
K-matrices which result from the ladder-type inser-
tions to convert all possible types of V vertices (see
Fig. 2 of Ref. 1) into X vertices. They can be divided
into two relevant categories. The first category com-
prises those in which the higher-order ladder insertions
either begin or end with an E or F vertex (number of
excited states changes by +2). In this situation
Hugenholtz® has shown that the sum over all “time
orders” gives an effective denominator which has no
contribution from the excitation of the Fermi sea.
Here we require only nondiagonal X matrices, which
can be obtained as

(K'| R, | k)
1+ (3r, — R’

K] Ky k) = (3.34)

where we define

KR,k = 2 f IR AV dr (3.35)
mJo

31 N. M. Hugenholtz, in The Many-Body Problem, C. de Witt, Ed.
(John Wiley & Sons, Inc., New York, 1959), pp. 1-46.
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and the expansion of (3.34) is analogous to that of (3.33). The other category comprises all the others.
For these the denominators include an excitation of the Fermi sea. The integral equation for the K-matrix
wavefunction is now (3.17), but with

! © " ” } (k”r).}l(k” ,) ”
Gualr,7) = [ "t i TS £, ke ke ) (3.36)

instead of (3.18). The Pauli-principle function is such that the denominator is nonnegative definite where
F s 0; however, k® — ¢* may be positive or negative. To handle these cases we introduce

Guatr ) = [t EIEDIED) g 1, g) it g7 2

k1/2 k2 +
”2 ” 1"t a2 2 __ 42 i‘ 2 __ ‘}
f dk// {k l(k r)]l(k r) ( 2q )]lz[(k q) r]]l[(k q) r ]} F(p, k” k q)
kll k + q
+ alp, k QLK — LI — )] R > g (3.37)
Then. if we define associated with (k% — g2)}| R, |(k% — ¢*)}) = 0, which
’ are analogous to those for an unexcited Fermi sea.

, N ey 24 We now turn to an investigation of the singularity
1R, 1K) J; Sk DIV q () dr, structure of the R matrix. We have computed the

- s s © . smallest positive zeros in 4 of the determinant of (3.25)
(K'| Ry |(k* — ¢°)%) =J; JUK' DYV (r)g,q,(r)r* dr, for the potential

where (3.38) Vir) =105, 0<Lr<a,
w0 _ =i(V(a") + V(@)), r=a, (3.43)
Exaar) = Jikr) -fo Goalr, PIV( N ', Qb — @) a<r<b,
Tea) = B(KE — qz)ér] where we have used b = 4a and b = 2a. The results
kal - n

are presented in Figs. 5-8. The reader will note in
* ' N Figs. 5, 6, and 7 the location of singularity in the R
- W (2 dr,  (339) T2 gularity
f war(rs POV al) (3.39) matrix. We have argued that this singularity should,
for the wavefunction corresponding to (3.36) we can il an n-particle cluster in the limit as n becomes
write

Upgt(7) = Exar(r)
M) (K = g Ry 1) L(p, K, )
L+ L(p, k, 9) (K* — g} R |(k* — g’
(3.40)
where
Lp ko = [ T D Fp Kk k' —
K — K+ g
k* > ¢,
=0, k*<q% (3.41)
Hence
| Kq 1)
= (K| Ry 1)
(1 R lG* = MK = ¢ Ry 1K) Lip, . @) N 1 1
LGk — R — ) "es 05 o
(3.42) ke

F1G. 5. The potential strength V, corresponding to the closest

which leads directly to an expansion Of K in powers singularity of R plotted as a function of k/kp for kp = 0.75 for the
. o a potential (3.43) with b = 4a. The curves are for different values of
of R,. The Emery singularities are here seen to be  the angular momentum /.
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Fic. 6. The potential strength ¥, corresponding to the closest
singularity of R plotted as a function of k/kp for kp = 0.75 for the
potential (3.43) with b = 2a. The curves are for different values of
the angular momentum /.

infinite, approach the saturation minimum. We inter-
pret this discrepancy as an indication that interacting
pairs are still a far from adequate description of the
infinite case. We have, as a check on the reasoning
after (3.5), also, of course, computed throughout
the interior of the Fermi sea by the usual procedures?
as applied, however, to (3.25). All the mesh spacing is
the same as in I, except we have used an r mesh of
0.05b for a total of 20 points.

Clearly, potentials of the form we have been dis-
cussing are not the only interesting possible forms.
If we place an electron in a polarizable lattice, the
positively charged lattice distorts to surround the
electron with positive charges. Beyond this is left a
band of surplus negative charges.®® If a second
electron is introduced, it will experience at close
distances repulsion, followed by attraction, followed
again by repulsion. These considerations lead us to

100 T

Fic. 7. The po-
tential strength cor-
responding to the
closest singularity of
R plotted as a func-
tion of ky. Curvelis
potential (3.43) with
b= 4a; curve 1l is
potential (3.43) with
b = 2a; curve III is
potential (3.44).
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F1G. 8. The energy as a function of kr in R-matrix approximation.
Curve I is potential (3.43) with » = 4a and A= 1; curve Il is
potential (3.43) with b =22 and A = 1.

also consider potentials of the form

Ma2V(r)/R* = 103, 0<r<a,
= —2.7697663 + 1105, r =q,
= —5.5395326, a<r<2a,
= —1.3848832, r=2a,
= 2.7697663, 2a <r < 4a,
(3.44)

which just has a bound state of energy zero.

We show in Figs. 7 and 9 the location of the singu-
larities and the R-matrix approximation to the energy.
[We remark that the K-matrix energy very likely
exists for this type of potential, as can be seen from
calculations analogous to (3.14).] There is no sign of
many-body saturation. The physical reason is simply
that two-body pairs are easier to form than many-
body clusters because in the many-body clusters the
long-range repulsion raises the emergy too much.
Consequently, the two-body scattering-matrix singu-
larity lies above that of the “normal” ground state
and prevents its calculation by perturbation theory. It
is just this sort of inversion of the singularities of
E(2, k) which allows a differently organized ground
state from the “normal’ one and permits the existence
of superconductivity and superfluidity. In terms of this
type of understanding (i.e., in terms of the coordinate-
space potential) and as the He-He interaction® can
be satisfactorily fitted without a longer-range
repulsion (nor has anyone, to our knowledge, sug-
gested that it should have a longer-range repulsion)

32 J. Friedel, Advan. Phys. 3, 446 (1954).
32 S. Y. Larsen, Phys. Rev. 130, 1426 (1963).
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FiG. 9. The energy as a function of kp in R-matrix approxima-
tion. Curve I is for ¥ = 0.75 and starts at kr = 0; curve II is for
V = 0.85. There is a small positive portion 0 < kra < 0.254, and
then it starts again for kra < 0.75. The missing portion results from
the dip in Fig. 7. Curve III starts at kpa < 1.25. The other values
are excluded by the singularities shown in Fig. 7.

we predict that 3He does not have a superfluid phase,
contrary to the suggestions of some.?~* We note
that, in fact, Pitaevskii® only argues that the exciton-
exciton interaction is attractive for large momenta
and distances. However, since the system is quantal
and not classical, this result is only necessary and
not sufficient for the formation of Cooper pairs
(leaving other considerations aside). Brueckner et al.3
explicitly assume (with Bardeen, Cooper, and
Schrieffer®”) that the effective interaction potential is
a very narrow function in momentum space. This
behavior corresponds to an oscillating potential in
coordinate space. As we have explained above, this
approximation is not too unreasonable for an electron
in a polarizable lattice, but the physically essential
feature is lacking in the He-He interaction. The
calculation of Emery and Sessler®® cannot be relied on,
because they have not produced a solution to the
minimization of the free energy for their model
Hamiltonians. They have not, as they say, used their
Eq. (10) to calculate a consistent form of the effective
energy spectrum. If this procedure is used, rather than

34 L. P. Pitaevskii, Zh. Eksp. Teor. Fiz. 37, 1794 (1959) [Sov.
Phys.—JETP 10, 1267 (1960)].

8 K. A. Brueckner, T. Soda, P. W. Anderson, and P. Morel,
Phys. Rev. 118, 1442 (1960).

38 V. J. Emery and A. M. Sessler, Phys. Rev. 119, 43 (1960).

37 J. Bardeen, L. N. Cooper, and J. R. Schrieffer, Phys. Rev. 108,
1175 (1957).
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an experimental value deduced from the physical
system as a whole, then the nature of their funda-
mental equation (14) appears to change rather
dramatically.

We remark that there may well be other singularities
implicit in the energy series, since the subsequences we
have considered do not by any means exhaust all the
terms of that series. It is even possible (though we do
not think so because of the physical interpretation) that
the singularities corresponding to two-, three-,- - -,
body binding which we have found are canceled by
other terms in the series—although as 4 is arbitrary,
we may not have accurately located them.

4. MODEL THEORIES

In view of our arguments in a previous section (that
the ground state of a many-Fermion system inter-
acting through a potential with a repulsive core and
short-range attraction must be viewed as a cooperative
liquid-vapor system possessing a critical point) and in
view of recent results®® on scaling laws (arguing the
detailed universal behavior of properly reduced
critical phenomena going in scope and detail beyond
the familiar law of corresponding states's), it seems
natural to turn our attention to more mathematically
tractable model theories in order to assess the practi-
cality of various procedures for the calculation of
many-Fermion ground-state saturation properties.
The results of scaling laws also receive wide experi-
mental®~# confirmation and, while they lack some
details,! yet they clearly give an excellent first approxi-
mation. The classical methods of studying liquid-vapor
systems have recently been surveyed by Levesque*—
in particular, the integral-equation approach. He finds,
among other things, that in the region of the liquid
coexistence curve (just the region we are interested
in) none of the equations proposed so far is satis-
factory. The procedures which have been successful
so far have been Monte Carlo ones.

The computation of the internal energy by various
integral equation methods is reasonably accurate, but
the computation of the pressure (and hence the location
of the coexistence curve) is very poor.

The most straightforward approach to the many-
body problem is that of Brueckner.® He shows that the
expansion in the interaction potential may be re-
expressed in terms of an expansion in powers of K,
the two-body scattering matrix. The advantage is that

38 For a review see L. P. Kadanoff ef al., Rev. Mod. Phys. 39,
395 (1967).

3% M. S. Green, M. Vicentini-Missoni, and J. M. H. L. Sengers,
Phys. Rev. Letters 18, 1113 (1967).

40 p. Heller, Rept. Progr. Phys. 30, 731 (1967).
41 D. Levesque, Physica 32, 1985 (1966).
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hard-core potentials leave X finite and, hence, not a
priori intractable in perturbation theory. (We have
seen previously® that it is likely that an analytic
singularity exists in an expansion in terms of AK at
A = 1, the hard-core point, but it may not necessarily
prevent calculation.) We do not consider Brueckner’s®
further resummation of ‘“self-energy” terms for
reasons brought out before.? [The treatment of
the “off-energy shell” propagation is such that the
opposite sign is obtained for the correction to the
fourth-order (the first order in which this approxima-
tion appears) ladder diagram for low density. This
error severely affects the numerical content of the
Brueckner theory.] The idea has gained currency that
the K-matrix expansion is a low-density onef2-4¢;
however, as we have seen above, the existence of the
two-phase region in the (A-kp) plane means that an
approach based on a low-density basis alone could
not be expected to be valid. This situation is in marked
contrast to the case of purely repulsive forces, where
it has been found* to be a good one.

In our opinion a more fruitful viewpoint is the
analog between the K expansion (modified by us as
the R expansion) and the classical Mayer f expansion
articulated by Bloch,” who has also extended the
work to nonzero temperature. We define

f=efrn 1y, (4.1

where V(r) is the classical interaction energy and
B = 1/kT. The configurational part of the partition
function is

eV = 1 {1+ 41(r;)}
=1+A3f(r) + B3+ @42
for A =1; hence, all the various thermodynamic

properties can also be so expanded. We have defined
(analogous to Brueckner’s® K) the R matrix as

R=V— VGR, 4.3)

where V is the two-body interaction matrix and G
the Green’s function with the Pauli-principle effects
of the Fermi sea included. Some of the points of
analogy between f and R expansions are: Both are
selective resummations of the expansion in terms of
the interaction potential; both treat the case of infinite
repulsive potentials without the introduction of ex-

43 N. M. Hugenholtz, Physica 23, 533 (1957).

4 B. D. Day, Rev. Mod. Phys. 39, 719 (1967).

4 R. Rajaraman and H. A. Bethe, Rev. Mod. Phys. 39, 745 (1967).

4t B. H. Brandow, Rev. Mod. Phys. 39, 771 (1967).

¢ K. A. Brueckner, in /965 Tokyo Summer Lectures in Theoretical
Physics—Part 1, Many-Body Theory, R. Kubo, Ed. (W. A. Benjamin,
Inc., New York, 1966), p. 152.

47 C. Bloch, in Studies in Statistical Mechanics, J. de Boer and G.
E. Uhlenbeck, Eds. (John Wiley & Sons, Inc., New York, 1965),
Vol. III.
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plicit infinities; both give the low-density limit from
the first term of the expansion; both can (though they
are not always used in this way) start from the non-
interacting state of a given (nonzero) density as the
basis of the perturbation expansion. The expansions
differ in the details of the system studied (classical at
finite temperature as a function of 4/kT vs quantum at
zero temperature as a function of AMc?*/k?), but, as we
pointed out above, there is great similarity in the
critical behavior of a wide range of systems. It can be
argued also that the zero-point energy of a Fermi
system acts much as a temperature. We, of course,
recognize that model calculations are useful only in
so far as they extract the salient features; we have not
demonstrated that this is so, but rather present it as a
classical context in which to view the many-fermion
problem with attractive potentials.

We choose as our model the lattice gas introdiced
by Yang and Lee.?* This model, briefly, is for the
configurational part of the partition function. The
gas atoms are constrained to sit on the sites of a space
lattice, no more than one per site. The adjoining
atoms can have an attractive interaction energy. The
series we mentioned above and related ones have been
much studied.?-4°

The most extensive data available are those of
Rushbrooke and Scoins® for open lattices for the
Ising model. They define two quantities

k
mA=pft—3 5 k) 4.4
n p( k;k_*_lﬁkp 4.4
Ina=Inp—zlnyg =3 " 4.5)

where z is the lattice coordination number, p the
density (number per site) of a lattice gas, and
f=nt-1 4.6)
is analogous to (4.1) above. In terms of the standard
transcription to the lattice gas,'® we have

plkT=1n A, 4.7
O/kT = 2v,In 5 + In «, (4.8)
W/kT =2y, Inn + Ina — In Afp, 4.9)

where p is the pressure, @ the Gibbs free energy per
particle, and ¥ the Helmholtz free energy per particle.
As usual,

V=U-—-TS,
0 0¥
D=Y+p/p=—(Dlr, P=p"1
op op It
48§’ Katsura, Progr. Theoret. Phys. (Kyoto) 20, 192 (1958) and
references therein.
4 R. A, Farrell, T. Morita, and P. H. E. Meijer, J. Chem. Phys.
45, 349 (1966).

% G. S. Rushbrooke and H. 1. Scoins, J. Math. Phys. 3, 176
(1962); 4, 998 (1963).

(4.10)
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As we remarked before, V' is necessarily a convex
function [Eq. (2.1)] of the volume, 1/p. The coefficients
B, are tabulated by Rushbrooke and Scoins® and are
polynomials in f. This fact allows us to re-express
(4.4)-(4.5), and thus (4.7)~(4.9), as power series in f
with coefficients which are polynomials in p. The
expansion for V' is

Wp/kT = [pln p + (1 — p) In (1 — p)]

. (2n — D
T2 D)

y [nil(n — 1) (_p)n+r+1 :l
=\ r J(n+r(n+r+1)
— A% — 1Bf5y® — 3D + O)f%)°
— $Cf°° — GF + E)f'y" — 3Ef")*
— (G + H+ iK% — GH + G)f%Y'
— 3Gf%°® — 5L + M + sN)f°)*
— (L + 3M)f* — L%y + -+ -, (4.11)

where y = p(1 — p). The constants v,, 4, -+, N are
the Rushbrooke~Scoins parameters, which they do not
tabulate completely, but do give all information
necessary to obtain them. We list them in Table I.
(We abbreviate the lattice structures, body-centered
cubic, and simple cubic by B.C.C. and S.C.; respec-
tively.) It will be noted that, except for the coefficient
of vy, ¥, is a function of y alone. The symmetry can be
shown to be complete if we subtract 2v,p In (%) from
Wpo/kT. As 7 oc exp (JIkT) with J a constant, this
changes V' by a constant only. However, it spoils the
low-density behavior in that a finite number of powers
of f now give a progressively better approximation in
the low-density limit. Terms through f* are good to
p%, 810 p°, 810 p®, etc. The symmetryin pand 1 — p
is a reflection of spin-up, spin-down symmetry in the
Ising model and cannot be expected in realistic gases.

The lattice-gas model has one advantage over the

TasLE I. Rushbrooke and Scoins parameters.

Lattice B.C.C. S.C.
¥y 4 3
A 48 12
B —480 -—120
C 60 0
D 3408 924
E 288 108
F —33264 —7476
G 162 0
H —14238 -1890
K 378408 62940
L 896 56
M 181280 21616
N —4033584 —535032

1659

more realistic case in that the hard cores are automati-
cally taken care of, whereas they still represent a
complication in a realistic case.

We need to solve for the coexistence curve (for
fixed f). This can be done through the usual Gibbs
double-tangent construction to ¥. That is to say,
we construct the convex hull of ¥ as a function of the
volume, 1/p. Alternatively, we can proceed analyti-
cally by means of the equations

4.12)
4.13)

which are entirely equivalent to the double-tangent
construction, and simply state that the pressure and
the Gibbs free energy are constant throughout the
two-phase region. It is convenient to our purposes to
replace (4.13) by

A@ — 2p) = 0, (4.14)

which is equivalent by (4.12). Now ® —2p is a
function of p through y alone, and hence we must have

4.15)

Hence we may replace (4.13) by (4.15). If we eliminate
Pgas from (4.12) by (4.15), from (4.8) and (4.14) and
the symmetries of In« we derive in an obvious
fashion that the equation for coexistence curve is

4.16)

in Rushbrooke and Scoins®® notation. We remark that
very accurate results for the coexistence curve can be
obtained through the use of Padé analysis of the low-
temperature expansions of Sykes, Essam, and Gaunt®
and the previous location of the critical point.?
Therefore we have used these to calculate the densities
which correspond to f values, which in turn corre-
spond approximately to T,, 0.97,, 0.8T,,0.7T,, 0.6T,,
and 0.5T,. We have summed the series through the
highly effective Padé approximant method.® In Table
II we have tabulated the approximate values of f at
each density. We also list the value of f from which
the density was computed,® except for the critical
point which was determined otherwise. We emphasize
the early approximants formed from few terms (as
are these) are most closely analogous with what is
possible in the many-fermion case. We have tabulated
only the results for the liquid side of the coexistence
curve, since, by the aforementioned symmetry of
In o, the gaseous results are identical. We see that
while the very earliest approximations are rather wide

AP = Pliquid — Pgas = 0,
AD = (Dliquid - (Dgas = 0’

Pliquid + Pgas = L.

Ina=0

51 M. F. Sykes, J. W. Essam, and D. S. Gaunt, J. Math. Phys.
6, 283 (1965).
52 G. A. Baker, Jr., Advan. Theoret. Phys. 1, 1 (1965).
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TasLe I1. Approximations to f(p) on the coexistence curve.

) f zero of [0, 1] zero of [1, 1] zero of [2, 2] zero of {5, 4]

3 0.877368 0.5000000 0.80000000 0.79168939 0.85699027
0.85505 1.0149103 0.62483647 1.0240838 0.99378839 1.0149738*%
0.920873 1.1953897 0.72892111 1.2515262 1.1858001 1.1952015
0.9588476 1.4600746 0.85770570 1.5963165 1.4598220 1.4596850
0.98058240 1.8571429 1.0201078 2.1680313 1.8700941 1.8568898
0.99254822 2.5245098 1.2414576 3.3544837 2.5742320 2.5242016
2 [4, 4] used here because of close pole and zero defect in [5, 4).

TaBLE III. Approximations to ¥'/kT on the coexistence curve.

P Y/kT [0, 1] f1,1] 12,2} (5, 4]
0.00745178 —5.96962732 —5.932571 —5.993124 —5.970856 —5.9696183
0.01941760 —5.07200178 —5.011036 —5.093456 —5.071996 —5.0719815
0.0411524 —4.399563 —4.310795 —4.416493 —4.396455 —4.3994217
0.079127 —3.85019 —3.726757 -3.857763 —3.839822 —3.8501198
0.14495 —3.3889 —3.217415 —3.377038 —3.360670 —3.388751%

b v —2.386294 —2.617064 —2.656686 —2.7393572
0.85505 —2.90174 —2.621070 —2.817055 —2.860930 —2.901746*
0.920873 —3.205995 —2.985377 —3.142835 —3.183741 —3.205644
0.9588476 —3.6350499 —3.468590 —3.586386 —3.623055 —3.634439
0.98058240 —4.216570114 —4.098859 —4.178916 —4.209376 —4.216261
0.99254822 —5.045952611 —4.973088 —5.018938 —5.040540 —5.045840

8 [4, 4] used for consistency with Table II.

of the mark, the improvement is quite rapid and that,
except near the critical point, the location of the
coexistence curve is determined within about
0.02 % . Even the [2, 2] Padé approximant, which
uses only 4 terms in the f series, gives about 29 in
accuracy, except near the critical point where it is
only 109, off.

In Table III we give the approximant values of
W/kT, evaluated at the corresponding approximate
locations of the coexistence curve given in Table II.
We also list, to as many figures as seem to us to be
meaningful, the results obtained from the low-tem-
perature expansion.’! The relation is

WkT = —v,In (1 + f) — In Afp, (4.17)

where A is that of Ref. 51. We obtain (except at
T = T,) at least four figure agreement, and in gaseous
regions even better agreement. The major component
of error in Table III stems from the approximate
nature of the location of the coexistence curve. As is
evident from Tables II and III, our results compare

favorably with classical methods for dealing with this
problem.*! We have also computed the results for the
simple cubic lattice, and they confirm those presented
here for the body-centered cubic lattice; however,
owing to its lower coordination numbers, the con-
vergence is, as expected, not quite so rapid. We
remark that the results of Kikuchi, using the cluster-
variation method, confirm that reasonable accuracy
is possible from approximations based on the careful
use of the properties of finite clusters, even quite
small ones. He also finds that the free energy [actually
he uses the pressure, which is closely related by (4.7)
and (4.9)] is determined relatively more accurately
than the location of the coexistence curve.
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A class of representations of the canonical commutation relations is studied, each of which is charac-
terized by an expectation functional that is the exponential of a Euclidean-invariant quadratic form of the
test functions. The underlying field operators are realized as the direct product of two Fock representa-
tions and the consequences of this realization are analyzed. Compatible Hamiltonians are constructed
and an extensive study of the most general quadratic Hamiltonians is presented. In order to include
thermodynamic examples, the analysis includes indefinite Hamiltonian spectra as well as the usual
definite spectra. Finally, conditions are given for a theory to be local in the sense that all time derivatives
of the field operator commute with one another at equal times but unequal spatial arguments.

1. INTRODUCTION

In an effort to shed light on the role in quantum
theory of various representations of the canonical
commutation relations (CCR), we have studied in
some detail the properties of an important special
class of representations. Included within this class are
representations that pertain to a general quadratic
Hamiltonian, and in particular to a relativistic free
field, to a generalized free field, and to the extension
of these examples to an equilibrium thermal ensemble
at a nonzero temperature. Our original discussion is
applicable to a rather general dynamical system
having no special invariance properties. However, in
view of the greater consequences that can be drawn,
we treat in detail systems exhibiting Euclidean in-
variance, i.e., invariance under space translations and
space rotations. Due to our inclusion of thermo-
dynamic analogs, we do not restrict ourselves to
Hamiltonians with positive spectra but instead make
allowances for the occurrence of both signs of the
energy.! Criteria are formulated for the spectrum of
the Hamiltonian to have the energy-momentum
relationship characteristic of a relativistic theory.
In addition, the influence on the energy spectrum
brought about by adopting the weak correspondence
principle—a constraint on certain expectation values—
is explored for the present models. Lastly, we as-
certain the conditions on the CCR representation
compatible with a Hamiltonian which behaves as the
integral of a local density function in the sense that the
mth time derivative of the field operator commutes

* Work supported in part by a contract from the National
Science Foundation.

t Work was done while at Syracuse University, Syracuse, New
York.

1 R. Haag, N. M. Hugenholtz, and M. Winnink, Commun. Math.
Phys. 5, 215 (1967).

with the nth time derivative of the field operator, for
all m and n, when evaluated at equal times and
unequal spatial arguments.

2. CHARACTERIZATION OF THE
REPRESENTATIONS

The canonical commutation relations (CCR) may
be given their most precise form with the aid of the
unitary Weyl operators U[f, g] which fulfill the com-
bination law

ULS", g'1ULS, g1 = exp {3il(f', ) — (&', N1}
xUlf'+f.g +gl, @1

where (f, g) represents the inner product of the two
real functions f'and g.> Minimal continuity arguments
ensure that the Weyl operators have the form

ULf, gl = exp {ile(f) — =()}}, (2.2

where ¢(f) and 7(g) are the self-adjoint smeared
field and momentum operators, respectively, which,
on an appropriate domain, fulfill the Heisenberg form
of the commutation relations

[e(f), (@] = i(f, &) 23)

In a cyclic representation of the Weyl operators there
exists a normalized vector |0) for which the vectors

|f.8) = Ulf, gl10) 24

span the Hilbert space J. Moreover, in a cyclic
representation the representation of U[f, g] is

2 A number of studies of the canonical commutation relations
exist in the literature. See, e.g., L. Garding and A. S. Wightman,
Proc. Natl. Acad. Sci. U.S. 40, 617 (1954); A. S. Wightman and S. S.
Schweber, Phys. Rev. 98, 812 (1955); I. E. Segal, Trans. Am. Math.
Soc.88,12(1958);J.S. Lew, Ph.D. thesis, Princeton University, 1960
(unpublished); H. Araki, J. Math. Phys. 1, 492 (1960); J. R. Klauder
and J. McKenna, ibid. 6 68 (1965); L. Streit, Commun. Math.
Phys. 4, 22 (1967).
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characterized,® apart from unitary equivalence, by
the functional

(01 UL, g110) = (Ol exp {i[p(f) — 7(g)]} 10). (2.5)

We shall study in some detail properties of those
representations (and their associated dynamics) for
which

Ol exp {ilp(f) — m(&)1} 10)
= exp {—i f k) IFEP + B(K) 18P dk}, 2.6)

where f(k) is the Fourier transform of the real smearing
function f(x) [and likewise for (k)] and a(k) and
B(k) are nonnegative functions of k = |k| for which
a(k) > 0, B(k) > 0, and «(k)f(k) > 1 for almost all
k. In this notation (f, g) takes the form

f, ) = f F(X)g(x) dx = f F®EK) dk. (27)

Due to their Gaussian form, we term such repre-
sentations ‘“‘quadratic’” CCR representations.? As we
shall see below, these representations, which are
evidently characterized by the functions « and §, fall
into two categories: The representation is irreducible
if and only if a(k)f(k) =1 for almost all k; the
representation is reducible if «(k)f(k) > 1 holds for
some k set of nonzero measure. It may be shown that
two representations U[f, g] and U’[f, g] are unitarily
equivalent, i.e., there exists a unitary transformation
¥ such that

VULS, g1Vt = U'[f, gl 2.8)

provided that «(k) = a'(k) and p(k) = f'(k) for
almost all £. In other words, distinct function pairs
a(k), B(k) label unitarily inequivalent “quadratic”
CCR representations.®

The class of allowed argument functions f and g
depends on the specific choice of « and §. For con-
creteness, it suffices to consider f(k)e L2(R3, a),
g(k) e L*(R%, B), where adk and fdk are the inte-
gration measures, respectively, and we have assumed
a three-dimensional configuration space. The relation
of > 1 coupled with Schwarz’s inequality ensures that
(f, g) will be well defined. Alternatively, we may take
both f(k) and g(k) as elements of L2(R?, [«% 4+ 2]}),
which is evidently dense in the spaces L*(R?, ) and
L¥(R%, B). If [a2 4+ p2F < p(k) where p is some

3 M. A. Naimark, Normed Rings (Noordhoff, Groningen, The
Netherlands, 1959), p. 242.

4 Such CCR representations have also been studied by H. Araki
and E. J. Woods, J. Math. Phys. 4, 637 (1965); D. W. Robinson,
Commun. Math. Phys. 1, 159 (1965); G. F. Dell’Antonio, ibid. 9,
81 (1968); J. Manuceau and A. Verbeure (to be published).

5 See, €.g., J. R. Klauder, “Coherence, Correlation and Quantum
Field Theory,” Brandeis Summer School, 1967.
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polynomial, then yet a further choice is to take
f(k) and g(k) as elements of S(R?), Schwartz’s space of
infinitely differentiable test functions of rapid de-
crease. In the present case it is evident that the
elements of S(R®) are dense in L2(R3, [«* + B21}).
Clearly there is considerable flexibility in the matter
for a given a(k) and B(k), but there seems to be no
universal set of test functions that apply to all
“quadratic” CCR representations irrespective of the
choice of « and .7

A number of specific physical systems are charac-
terized by having “quadratic’” CCR representations.
Among these we note the free relativistic scalar field
of mass m for which

a(k) = (k) = (k* + m)F = w(k)? (2.9)

and the generalized free field® for which
(k) = f (k)™ p(m?) dm?, (2.10a)
B(k) = f w(K)p(m?) dm?, (2.10b)

where p(m?) > 0 is the mass distribution so normal-
ized that

f p(m?) dm? = 1. @.11)
In the latter case, if p has support other than at a single
point, it follows that «(k)B(k) > 1 for all k and the
corresponding representation is reducible. In addition,
a free scalar field of mass m in thermal equilibrium at
temperature T has a “quadratic’> CCR representation
characterized by

a(k) = w1 + n(k)], (2.12a)
Bk) = w()[l + n(k)], (2.12b)

where
n(k) = {exp [w(k)[xT] — 1} (2.13)

and « denotes Boltzmann’s constant.® Here «ff > 1
for all k if 7> 0, and the corresponding representa-
tion is reducible. In a like manner, a generalized free
field in thermal equilibrium at temperature T is
characterized by

a(k) =fw(k)"1[1 + n(k)lp(m?®) dm?, (2.14a)

B(k) = f o(k)[1 + n(k)lp(m?) dm®.  (2.14b)

¢ L. Schwartz, Theorie des distributions (Hermann & Cie., Paris,
1957), Vol. I1.

? Regarding the dependence of test function spaces on the given
CCR representation, see L. Streit, Commun. Math. Phys. 4, 22
(1967).

8 0. W. Greenberg, Ann. Phys. (N.Y.) 16, 158 (1961).

? This result is a simple generalization of the answer obtained by
H. Araki and E. J. Woods [J. Math. Phys. 4, 637 (1963)] for the
zero-mass case.
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To indicate that systems exhibiting interaction are not
excluded by the restriction to “quadratic’ CCR repre-
sentations, we cite the case of the exactly soluble
rotationally symmetric models*® for which a(k) =
&/m, B(k) = m, with a8 = & > 1. Our discussion will
indicate further classes of systems for which such
representations apply.

3. REALIZATION AND PROPERTIES OF THE
REPRESENTATIONS

Irreducible Case

If we denote the special irreducible representation
for which «(k) = f(k) =1 by the subscript F (for
Fock), then the field operators for the general irreduc-
ible “quadratic” CCR representation may be expressed
in the form

o(f) = ps(adf), (3.1a)
7(g) = mp(plg), (3.1b)

which, since of = 1, is a canonical transformation
that preserves the CCR. Here we have used the
notation «?f and B¥g to correspond to those elements
which in momentum space are a2 (k)f(k) and pk)g(k),
respectively. According to the remarks made above,
the transformation from ggp(f) to ¢F(a5f) cannot be
carried out by a unitary transformation since distinct
o (recall here f = o) label unitarily inequivalent
representations. Nonetheless, Eq. (3.1) ensures that
the properties of ¢ are easily determined from those
of gy, etc.

The special Fock fields are characterized by the
formal properties that the momentum space field
@(k) and its conjugate momentum (k) admit a
decomposition into creation and annihilation oper-
ators a'(k) and a(k), respectively, in the simple
fashion:

Fp(k) = 27Ha(k) + a"(—k)],
p(k) = —i(2)Ha(k) — a'(—k)].
As is customary,
[a(k), &' (k)] = d(k — K'); (3.3)

all other commutators are vanishing. The usual no-
particle state |0) is invariant against spatial rotations
and translations, and for all k fulfills

a(k) [0) = 0.

(3.2a)
(3.2b)

(3.4)

All states in the Hilbert space ¥y are determined from
normalizable linear combinations of the Fock states

ky, - -, ko) = (1) Hal(ky) -+ - af (k) [0) (3.5)

10 J, R. Klauder, J. Math. Phys. 6, 1666 (1965).
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for all k; and all n > 0. On combining this fact with
(3.2) and (3.3), it is clear that X is spanned by vectors
of the form

Pr(ky) - - - Pr(k,) [0) (3.6a)
or by those of the form
p(ky) - - - 7p(k,) [0) (3.6b)

for all k; and all n. Thus |0} is a cyclic vector for the
field ¢ or the momentum #. This is frequently stated
from the generating function point of view, namely,

¥p = {exp lip(/)]} 10) = {exp [-in(®)]} 10), (3.7)

where the overbar denotes the closed linear space
formed by taking all normalizable linear combinations
of the indicated vectors.

Another familiar fact we shall employ deals with
the completeness of the Fock operators, i.e., that all
operators on Jy can be built from the ¢y and =y,
The precise rendition of this fact is frequently stated in
terms of the commutant {4}’ of a family of operators
A4 which is defined as the set of bounded operators
each of which commutes with the operators A. Thus,
the irreducibility of ¢y and 7y may be stated as

{Uslf gl = {1}, (3.82)

where {I} is composed solely of multiples of the
identity. Additionally, therefore, the double com-
mutant

{Urlf, gl}" = B(3kp), (3.8b)

where $B(Jg) denotes the set of all bounded operators
on the Hilbert space ¥y .

Reducible Case

For the reducible representations, it is convenient
to introduce

kya(k) — 1 1
_B0Re =1 _ 1
(k) (k)
which, by hypothesis, is positive for a k set IV of
nonzero measure. [The complementary set I' is defined
as the set of k for which y(k) = 0.] With this we may

write the basic functional (2.6) for the ‘“quadratic”
CCR representations as

O] exp {ilp(f) — ()1} 10)
= exp { -} f (k) [ 7 + o= (k) |2R)1?] dk}

(k) 3.9

X exp { 1 f (k) 12001°] dk}. (3.10)

In this form it is rather apparent that ¢ and = may be
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decomposed into two Fock fields as given by

o(f) = %‘(‘ﬁf) ®1, (3.11a)
m(g) = mp(aig) ® 1 + 1 ® my(yhg). (.11b)

The first entry in the direct-operator product corre-
sponds to the “first”” field while the second entry
corresponds to the ‘“second” field. Clearly, the
Heisenberg form of the CCR is fulfilled by the “first”
field; the second term in 7(g) commutes with @(f).
Whether or not these two fields should be called
“independent’’ can only be answered after the dynamics
have been formulated. There are cases where the pair
of fields have an independent history and other cases
where they become mixed together. In any case, the
field operators and the associated dynamical evolution
are reduced to computations involving two Fock-like
representations, which evidently can be represented
in a Hilbert space ¥ < Xy ® Xy. Here, equality
holds if and only if y > 0 for almost all k, ie., the
set I' has zero measure. If I' has positive measure,
then we may set & = ¥y ® ¥y r, where Xy r de-
notes the Hilbert space formally composed of normal-
izable linear combinations of the vectors (3.5)
restricted so that k; € IV. For simplicity we shall
assume for the most part that ¥ > 0 for almost all
k so that Xg = Kp.

The reducibility of the field operators ¢ and = is
clear from (3.11) since it is evident, for example, that
the operator 1 ® 7x(ytg) commutes with both ¢ and
= and differs from the unit operator. To characterize
such commuting operators let us define the “dual”
Weyl operators

U'lr, s] = exp {i[¢'(r) — 7' (O]},
where r and s denote test functions and where
P = —ge(adr) ©1 + 1@ sy i), (3.132)
7'(s) = 1 ® mp(yls). (3.13b)

Here, y“i is defined only on I, the set for which
y > 0. By construction, the primed fields commute
with the unprimed ones and, moreover, they generate
all such fields so that

(3.12)

{Ulf. gly ={U'lr, s}y, (3.14a)
{ULf, gl}" = {U'[r, s]}. (3.14b)
We note in addition the relations
{ei(p(f)}' = {ei(aF(f)}/ ® 35(361?), (3.153.)
{e“"‘f’}” = {e"“’F‘f’}” ® 1. (3.15b)

The latter relation implies that, unlike the irreduc-
ible case, the field operators ¢(f) are no longer cyclic.

AND L. STREIT

Indeed, Eq. (3.15b) leads to

exp [ip(/)] 10) = Ky ® Qp, (3.16)

which is heuristically evident from (3.11a). However,
since 7 involves the “second’’ field,

Ulf, g110) = Xy ® ¥ = K; (3.172)
and, in like fashion, a similar argument shows that

Ulr,s]10) =Xg @ g =3,.  (3.17b)

We note, in contrast to the irreducible case, if 4 |0) =
0 and A4 e{U[f,gl}", then 4 =0. This follows
because the cyclic vector of a von Neumann algebra—
{U'[r, s]}" in our case—is separating for its com-
mutant.’ On the other hand, and again in contrast to
the irreducible case, there do exist nonzero annihi-
lation operators A4 € {ei!"}. Specifically, if Ape
$B(¥p) annihilates the no-particle state in JCg, then
A =1® Ag € {*'"} annihilates |0).

As is common in a canonical approach, we shall
ask that the Hamiltonian H connect the field and

momentum via the usual relation
i[H, ¢] == (3.18)

From the foregoing commutation relations it may be
seen that

Hyy = f b'(k)b(k) dk, (3.19)
where
b(k) = a (K)o (k) + y2(K)ay(k)  (3.20)
already fulfills the requirement (3.18). Here
ak) =alk) @1, (3.21a)
a,(k) = 1 ® a(k) (3.21b)

denote annihilation operators for the “first” and
“second” fields, respectively. In consequence, H —
Hy = U commutes with ¢ and thus U is a function
of {etoy’.

The no-particle state [0) fulfills the relations

a,(k) [0) = ay(k) [0) = 0 (3.22)

for all k. As a consequence, the state |0) (and no
other state) is invariant under spatial rotations and
translations for which the infinitesimal generators
read

5=73 f aI(k)(i %‘ x k)a,(k) dk, (3.23a)
F=73 |da®kak)dk, (3.23b)

11 J. Dixmier, Les algébres d’opérateurs dans Iespace hilbertien
(Gauthier-Villars, Paris, 1957), Chap. I, Sec. 1, Proposition 5 and
corollary.
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respectively. In a Euclidean-invariant theory the
Hamiltonian H commutes with both 3 and §. Thus
either |0) is an eigenstate of H (which we assume
adjusted to eigenvalue zero) or it is taken into a non-
normalizable vector. It is the essence of Haag’s
theorem'? that for the irreducible Fock representation
only the free field Hamiltonian can annihilate |0),
while every other proposed Euclidean-invariant Ham-
iltonian carries [0) into a nonnormalizable vector in
virtue of vacuum polarization. However, for a reduc-
ible “quadratic’ representation of the type considered
here, such a “no-go’’ theorem does not apply. We
note first that Hy,, as the analog of a free-field
Hamiltonian, annihilates the no-particle state |0).
Secondly, we note that W = H — Hy, can be ex-
pressed in terms of {e'”}’, which contains annihila-
tion operators for |0) unlike the irreducible case. It
is by exploiting such operators in the reducible
representations that nontrivial Euclidean-invariant
canonical theories can be formulated that circumvent
Haag’s theorem. While some such models have been
formulated, we content ourselves here with a dis-
cussion of the single-particle sector of Hilbert space
for which a simplified or reduced Hamiltonian is
sufficient. Such an analysis is, in any case, a necessary
preliminary to the analysis of the dynamics in higher-
particle sectors.

4, PROPERTIES OF ‘FREE” HAMILTONIANS

Although the Hamiltonian Hy, in Eq. (3.19) is
positive, leads to ¢ = =, and annihilates the vacuum,
it is deficient in one respect to serve as a model for a
free Hamiltonian. Since Hy, only “tests’ the presence
of one form of excitation, there will be a multitude of
distinct states having energy eigenvalue zero. Specif-
ically, the creation operator

(q) = —dk@al(@ + yH@al® @1

commutes with both b(k) and b'(k) for all k, and thus
the Fock states

Iql’ T, qn>0 = (n!)—%CT(‘h) e cT(qn) |0> (4'2)

each fulfill

4.3)

Hylqy," " 1,0 =0

for all n and all q, values (at least q; € I''). Hence the
entire infinite-dimensional subspace of normalizable
vectors spanned by these Fock states is characterized
by the fact that H,, has eigenvalue zero.

12 See, for example, A. S. Wightman, Lecture Notes at the French
Summer School of Theoretical Physics, Cargese, Corsica, July, 1964;
L. Streit, “A Generalization of Haag’s Theorem,” Nuovo Cimento
(to be published).
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The most general quadratic Hamiltonian that
fulfills (3.18) and retains Euclidean invariance also has
the potential to lift this degeneracy. The form of this
most general Hamiltonian reads

m#mﬁ%ﬁmm&
ﬂb%mm+&%wmm&.ma

Here r(k) can be a rather general real function of k
and still ensure Hermiticity of H,. However, for
generality we do not require that H; be positive;
instead we permit r(k) to assume both positive and
negative values. Since

[9(x), ay(k)] = [p(x), ak(k)] = O,
it is evident that

iHy, 9(x)] = 7(x),

4.5)

(4.6)
as desired.

Since H, is quadratic at each point k, it is plausible
that independent normal modes can be introduced
which diagonalize H,. The energy roots that follow
from such a diagonalization are given by

E,(k) =} +r £ [(B + ) — 4rfalt). (47)
The radical term has the equivalent forms
Q= [(B + ) —4rfalt
= [(B — 1) + 4r(af — Dfalt, (4.8)

which, since «f > 1, shows Q to be real (and non-
negative by definition) regardless of r. Evidently,
E (k) > 0 for almost all k, while E_(k) has the sign
of r(k), i.e.,

E_(k) 20, whenr(k) 2 0. (4.9)

If «f > 1, then E, — E_ = Q > 0; only if «f =1

and r = f§ does Q = 0 leading to E, = E_. In any

term where E, — E_ appears as a divisor, we shall

implicitly assume the latter condition does not hold.
Let us also introduce the “spectral weights”’

po= +E(l — aE|(E, — E),  (4.10)
which satisfy the identity
pr+ p_=1 (4.11)

Unlike the usual case, one of these “weights’ may
assume negative values. In fact, as we shall indirectly
show below,

py >0, when E, >0,

p- 20, when E_20.

(4.12a)
(4.12b)
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Direct substitution of the above relations shows that

«=p,JE, + p_|E_, (4.13a)
B=E.p. +Ep_, (4.13b)
r=Ep, +Ep =EFE . (4.13¢)

Note that § + r = E, + E_. Evidently the three
functions E, , E_, and p, are a substitute set for «,
B, and r.

We introduce two destruction operators a, (k) via
suitable linear combinations

a,(k) = a1 (p,/ED¥ay(k) + (pr/Ep)tay(®)] (4.14)
which are independent, i.e.,

[a_(k), a,(K)] = [a_(k), al(K)] = 0 (4.152)

and are conventionally normalized in the sense that

[a.(K), al(k)] = 6k — k). (4.15b)

In terms of these operators, the Hamiltonian is
resolved into independent normal modes according to

Hy = f [E, ()’ (K)a, (k) + E_(K)a' (k)a_(k)] dk.
(4.16)
Finally, we note that the Hilbert space J¢ may also be
written in the related form

¥ =, ®k_, 4.17)

where JC, is the space spanned by repeated action of
the creation operator a', on the no-particle state |0).

Armed with the relation (4.16) for H,, it is not
difficult to find an expression for the two-point
function

(0] g(x)e™Ho'g(y) |0).

(4.18)
By noting that

1
@ent
1 1 ~iky| [P+ : t
= — (&Y ot (k
] [(&) “®
3
- (’Z—j) ai(k)] dk {0),
as follows from (4.14), we can readily deduce that
(©f p(x)eHo'p(y) |0)

_11 J' eik-(x—y)[& (ke B0t
E,

o(y) |0) = f e *d(kyal(k) dk |0)

4.19)

T 2(2m?

+ %f (k)e-"E—"“"] Ak, (4.20)

owing to the independent time evolution of the “+”
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and “—"" modes. If we let

Ik, +) = al(k) |0) (4.21)
denote the single-particle eigenstates of H,, then
evidently

p(K)/E.(k) = 2(2m)* [(0] ¢(0) |k, £)I%,

which demonstrates that the sign of p is linked to that
of E. On comparing the relation

0] p(x)g(y) [0

LR S g P
=305 f e [E+ (0 + £ (k)] ik (4.23)

(4.22)

with Eq. (2.6) expanded to the same order in g, i.e.,

(| { f P01 (%) dx}2|0> =3 f FOOR ak) dk, (4.24)

we are led to the verification of (4.13a). In like manner
two derivatives with respect to ¢ lead to the relation

(O g(x)H3p(y) |0)
= (0] [p(x), Hol[H,, ¢(1)]10)
= (0| m(x)=(y) |0)

— _1_ 1 ik-(x—y)
=G0 f X IE, (k)p, (K) + E_(k)p_(k)] dk.
(4.25)

The expansion of (2.6) to the same order in  leads to

(| { f a(x)g(x) dX}2i0> =1 f 180012 B0 dk, (4.26)

which, on comparison with (4.25), establishes the
validity of (4.13b). )
Lastly, we note for reference the relation

(0] p(x)H3e(y) 10) = (O] m(x)H,m(y) |0)

1 1 ik(x—y) ()2
= - Q¥k) dk,
22 )¢ )
4.27
where we have introduced the abbreviation
Q¥(k) = EX(k)p,(k) + E2X(k)p_(k).  (4.28)

Relativistic Covariance of One-Particle States

One natural condition that might be imposed on the
one-particle states is the relativistic energy-momentum
relation

Eyk) = (K + 4D} = w,, (4.29)

where u#, > p_ > 0, in the case that E_ > 0. These
relations do not uniquely fix the parameters «, 8, and
r since no requirement has been imposed on p, (or
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p— =1 — p,). From the relations

a=wilp, + o lp_
= o' + p_(0, — 0 Yww)"
= 0! — p(o; — 0 Yw,0 )7,

(4.30)

it is apparent that a suitable p, exists which satisfies
the bounds 0 < p, < 1 whenever the condition

wZl(k) > a(k) > w7'(k) 4.31)
1s satisfied. Given such a condition on «, Eq. (4.13a)
fixes p,, which then, through (4.13b) and (4.13c),
fixes # and r uniquely. In particular, we may put
(4.32a)
(4.32b)

B=wp, +top_ =0, +0o_— 0w,

r=w_ o

For very large & values, o, =~ w_ =~ k, which leads to
a~ k™ and f~ k~r Thus, for very large k,
aff — 1, which, roughly speaking, means that these
modes tend toward irreducibility.

In the indefinite relativistic energy case for which

E.(k) = £k + D = +o,  (4.33)

(and thus p_ < 0), a solution to the relation (4.30)
exists so long as ’

a(k) > w7(K). (4.34)

Equations (4.32) still determine § and r. For very
large k, w,~ +k so that f =~ k®x and r ~ —Fk?a«.
Hence off ~ k%?«?, which tends toward unity, and
thus irreducibility for such modes, only if ko — 1 for
large k.

It is worth making the qualitative remark that the
high k behavior of the product «f is loosely connected
with the degree of locality attainable in the interaction
term W = H — H,. Unfortunately, no fully rela-
tivistic examples are known for which W 5 0.

In the context of the free theory where WU = 0, it
is straightforward to embed time translations and
Euclidean transformations in a unitary representation
U(a, %) of the Poincaré group {a, A}. Here U(a, 1)
factorizes as

U@, 1) = U,(a, ) ®@ U_(a, 1) (4.35)

with U, € $B(¥,) the usual representations generated
by multiparticle states of mass u,. bosons.’® (However,
allmomenta lie in the backward cone for U_if E_ < 0.)
This product structure reflects itself in the additive
form of the ten generators. The Hamiltonian has
already been given in Eq. (4.16). The space rotation

13 For the structure of these representations see, e.g., A. S. Wight-
man, “L’invariance dans la mechanique quantique relativiste,” in
Relations de dispersion et particules elémentaries (Hermann & Cie.,
Paris, 1960); L. Streit, Helv. Phys. Acta 39, 65 (1966).
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and translation generators (3.24) may also be given
a compatible form as follows:

=3

It

>

pren

f aﬁ(k)(igl-{ x k)al(k) dk, (4.36a)

J' al(k)ka, (k) dk. (4.36b)

To complete the list we quote the expression for the
relativity (“boost”) generators, which take the form

K=3 f (K a,(k) dk, (4.37)
where e
i(@ 2
K, = — E{ﬁ EW+E® L) 339

It is simple to verify that the proper commutation
relations are satisfied by these generators. As usual,
the restriction on the functional form of E,(k)
follows from the requirement that

T =i[XK,; H]. (4.39)
To satisfy this condition we require that
k = [E w02 E (k):l
okt
19
= - — Ej(k). 4.40
> 7 £Ak) (4.40)

The solutions E2(k) = k® 4 u? are consistent with
either the positive or indefinite energy case discussed
above.

Weak Correspondence Principle

According to the weak correspondence principle,
the expression

H(f,9= (figl HIf.g) (4.41)

coincides with the classical Hamiltonian where f and
g play the role of the classical momentum and field,
respectively.! If we make use of the relations

a®) If, g) = 2 Had )fK) — it RIS ),

(4.42a)
a(k) |f, &) = =i HAREW | f, 8), (4.42b)
it follows from (4.4) and (3.9) that

Hy(f,g)=<(f, gl Holf, 8
=1 f (7@ + (B + 1B — rfa) |Z0)I} dk.
(4.43)

An alternate expression for the factor in this equation

14 J. R. Klauder, J. Math. Phys. 8, 2392 (1967).
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is provided by (4.28), i.e.,
Q*(k) = EX(k)p, (k) + E2(k)p_(k)

= B>+ rB — rla (4.44)
For a relativistic theory we should have
Q¥k) = wi(k) = k® + mg, (4.45)

where m? is a constant. In the case of an irreducible
representation (af = 1, r # ), we automatically find
p..(k) = 1 and so need only fulfill

w(k) = k) = E_ (k). (4.46)

In a sense, the weak correspondence principle can be
said to imply covariance in this case. In the case of a
reducible representation, on the other hand, the
weak correspondence principle by itself does not imply
covariance since it is but one condition on the three
functions E, , E_, and p,. If we were to require in
addition that

EL =k + 42, (4.47)

o' =k* + plp,(k) + plp (k).  (4.48)

This leads to the independence of p.. on &, and shows
that

then

mi = ulp, + Wip_, (4.49)
which is the customary definition of the bare mass.!®
This familiar example should help make the weak
correspondence principle plausible. In any case, even
when the theory is not relativistically covariant, we see
from (4.44) that the “classical dispersion relation”
Q%(k) is always given as a weighted average of the
“quantum dispersion relations’ E2(k).

Locality of the Hamiltonian

In this section we determine those Hamiltonians
H, which act locally on the field ¢(x, t) in the sense
that

[p(x, 1), '9(y, )] =0, x=y, (4.50)
forallr,s=0,1,2,---, where
0 g(x, 1)
(7) Py X,
X,l)=——
(X, 1) v
= i"{H,, [Ho," ", [Ho, p(x, 0]} -]. (4.51)

From the normal mode decomposition

T f{(Ejf

oo PN
_ e—zE_t(E_—) a_} dk + hc, (4.52)

15 See, e.g., S. S. Schweber, An Introduction to Relativistic Quan-
tum Field Theory (Harper and Row Publishers, Inc., New York,
1962), p. 659.
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an expression for ¢ (x,?) can easily be obtained.
From such an expression it follows in a straightfor-
ward manner that

[P"(x, 1), 9y, 1)]
_ i(=1) — (=1)°]
2027

Xfeik-(x—y)[E:+s~1P+ + E’j‘s“lp_] dk. (453)

The desired commutativity for x # y is assured if and
only if?®
Elpy + EXp_=P,, (4.54)

forn=1,2, -, where P, is a polynomial in k2. We
may invert these relations so as to find an expression
for E% in terms of the first few.P,. To find this
expression we note that E,. must be solutions of a
biquadratic E4 + BE% + C = 0. Averaging tHis rela-
tion, as well as one obtained by premultiplication with
E% , with p_. and using (4.54) permit us to find B and
C as functions of P,, P,, and P,. In particular, we
learn that

(Pz—Pf)Ei+(P1P2—Pa)E;2t+P1P3"'P§=0-

(4.55)
The solution of (4.55) has the form

E: =R, + (Ry)*, (4.56)

where R; and R, are rational functions of k2. In
addition, we have

pr = H1 4+ (P, — RY[(R).  (457)

Using these relations to extend Eq. (4.54) into the
complex k? plane, we see that R, and R, must in fact
be polynomials since the infinities that would arise
could not cancel for all values of n. With this under-
standing, Egs. (4.56) and (4.57) represent the most
general solution to (4.54) when E2 # E? and p, #
0, 1.

Further restrictions on the R; follow from the
self-adjointness of H, and the existence of CCR.
Since F% > 0, we must have

Ri(k*) > Ry(k*) > 0 (4.58)

for almost all k2. The remaining physical requirements
are fulfilled, provided that

E.p, = 3[R, + RN £ (P, — RY/(Ry)H] > 0.
(4.59)

In the degenerate cases, where p, = 0,1 or E, =
+E_, all except E, = —E_ amount to off = 1. To

18 1. Schwartz, Theorie des distributions (Hermann & Cie., Paris,
1950), Vol. 1, Theorem XXXV, p. 99.
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achieve locality (in our sense) requires that (the non-
degenerate) E? be a polynomial in k% If E, = —E_,
there-is no restriction on p, (other than p, > 1) and
our type of locality is ensured if E? (= E?) is a poly-
nomial in k2

Hamiltonian Density

It is intuitively plausible in the local cases we are
considering that the Hamiltonian H, may be written as
the integral of a density function Hy(x) which is local
in the sense that

[Ho(x), Ho(y)] = 0 (4.60)
and relatively local in the sense that
[Ho(x), 9] = [Ho(x), 7(1N] =0  (4.61)

for x # y. This notion can be established by the
following argument. The Jacobi identity states that

[[Ho(x), HiW)], "™ (@)] + [[¢™(2), Hy(x)], Hy(y)]
+ [[Ho), 9™ (@)], Ho(x)] =0, (4.62)

where ¢™(z) = 0™ @(z)/dt™. Whenever x # vy, the
local density concept implies the vanishing of the last
two double commutators, for then x and y can not
both equal z as is required for nonvanishing values.
Accordingly, the first double commutator vanishes for
all m and z, which implies that for x # y the com-
mutator [Hy(X), Hy(y)] is a ¢ number which must
vanish for strictly quadratic Hamiltonian densities.
In the case of an irreducible CCR representation the
desired local density Hy(x) is easily established.
Without loss of generality we assume p, =1 and
thus (a, = a, E, = E)
= f d(WE(K)a(k) dk. (4.63)

Employing the relation

X, z(kx——Et) (
P = (2) @ )%f  Ewop [E(k)]*
(4.64)
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we see that

Hy =1 f 7%, 1) + @(x, DEX—iV)g(x, 1): dx.
(4.65)

The locality condition already found—namely, that
E?*(k) is a polynomial in k®—leads to a manifestly
local Hamiltonian density Hy(x) since the separate
terms :7%: and :@E%g: are individually and mutually
local (in a formal sense).

The analogous problem in the case of a reducible
CCR representation is much more complicated. While
it may. be expected that the Hamiltonian could be
expressed as a quadratic form in @(x) and w(x), this
expectation is incorrect, as we shall see. What is true,
however, is that the Hamiltonian may be expressed
as a quadratic form in the fwo basic canonical pairs
A=+, -)

1
—— h.c
P (2)*(2@*] il )[El(kn* -
(4.662)
f ¢ (KE,()] dk + h.c.

(4.66b)
In particular, we find directly from (4.16) that

—1
0= e

Hy=1} E

=T -

f %) + gAOEX(— V), (x): dx.
(4.67)

From this expression it is apparent that four fields are
necessary to describe H,: in particular, ¢, and =, for
A = 4+, —. Moreover, the integrand in (4.67) need not
be termwise local to ensure the locality of ¢(x, t). For
instance, the term @ E® ¢, : is not necessarily local
since it is not required that E? is a polynomial. An
alternative expression for the Hamiltonian may be
given in terms of the four fields ¢, ¢, ¢, and . How-
ever, it, too, does not exhibit manifest termwise
locality. Evidently, locality of the Hamiltonian
density in such cases is a property of the entire inte-
grand.
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This paper deals with the existence and construction of linear physical chains whose characteristic
(secular) polynomials are essentially one of four classical types: Hermite, generalized Laguerre, gen-
eralized Bessel, or Jacobi. Each of the results is useful for determining the natural frequencies (normal
frequencies or eigenvalues) of the systems involved. A chain of coupled harmonic oscillators or the
corresponding electrical analog can be regarded as a prototype of the systems under consideration.
Chains of both arbitrary finite order and infinite order are considered. Let N be a prespecified positive
integer. Consider a finite sequence {S,}7-; of linear dissipationless spring-mass chains in which S,
consists of masses mq, m,, - -+, m,_, and springs with spring constants k¢, Xy, - * -, k,, and in which
8,41 is obtained from S, by attaching mass m, and spring with spring constant k,,. S, is connected
to a wall by the spring having spring constant k,,, but the chain may be free at the other end. In this
case S, is to consist only of mass m, and spring with spring constant k,. Three major results relating
to such a sequence are obtained. First, given a positive integer N, a procedure is developed whereby
an existing Nth-order spring-mass system can readily be tested to determine whether the characteristic
polynomials ¢;, ¢,, - - -, ¢ associated with chains- §,, S;, - - -, Sy are all classical polynomials of a
single type; and if so, which type. The testing procedure can also be extended to the infinite-order case.
Secondly, by means of large classes of examples, it is demonstrated that physical systems of any
preassigned order N can actually be constructed so that for I < n < N the characteristic polynomials of
S, are all a specified one of the four classical types. Finally, it is shown that of the four possible kinds,
only Jacobi- and Laguerre-type infinite-order systems can be generated; and the latter type can occur
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only if relatively stringent conditions on the physical parameters are satisfied.

INTRODUCTION

In the analysis of certain classes of coupled linear
systems, of which a chain of coupled linear harmonic
oscillators or its corresponding electrical analog may
be regarded as a prototype, an important problem
consists of determining the natural frequencies
(normal frequencies or eigenvalues) of the systems.
These frequencies are found by calculating the zeros
of the characteristic (secular) polynomial for the
system, where the characteristic polynomial is that
polynomial which, when equated to zero, yields the
characteristic (secular) equation of the system.

Three questions related to determination of the zeros
of characteristic polynomials for the physical systems
under consideration are answered in this paper.
Their formulation is made with reference to the
spring-mass configuration depicted in Fig. 1. The sys-
tem indicated is to be dissipationless, and the springs
are linear and massless. The term k, may be zero;
all other k,, and all m,, are to be positive.

Starting with a mass m, and two springs having
spring constants k, and k;, one can, by successively
adding a mass m; and spring with spring constant

* Present address: Mathematics Department, University of
Alabama in Huntsville, Huntsville, Alabama.

T Present address: Mathematics Department, University of Ten-
nessee at Chattanooga, Chattanooga, Tennessee.
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FiG. 1. Spring-mass configuration.

ki1, construct a finite sequence {S,}¥ , of spring-
mass systems. The questions to be answered are as
follows.

() Given a positive integer N, can an existing
spring-mass chain containing N masses be readily
tested to determine whether the characteristic poly-
nomials ¢,, ¢y, -+, ¢y associated with subsystems
Sy, 8z, +, Sy are all classical polynomials of a
single type; and if so, which type?

(i) Given a positive integer N, is it possible to
choose positive spring constants (except possibly for
ko) and positive masses so that the characteristic
polynomials of {S,}¥ are all of a single specified
classical type?

(iii) In the limiting infinite-order case, what
answers, if any, can be obtained to questions analo-
gous to those posed in (i) and (ii)?

Here, as in all that follows, a classical polynomial
is understood to be a Hermite, generalized Laguerre,
generalized Bessel, or Jacobi polynomial, with linear
changes of argument being permitted; however, the
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last three types are to be understood in a slightly
extended sense from the “usual” definitions. These
extensions are specified in following pages.

In Sec. 3, question (i) is affirmatively answered and
the applicable testing procedure is presented. The
affirmative answer to (ii) is given in Secs. 4 and 5 by
means of constructed classes of examples; and the
answers to (iii) are provided in Sec. 6. The develop-
ment of these answers depends basically on some
recent results concerning certain recursively generated
polynomials.? Consequently, a summary of these
results (the central one being Theorem 1.3 below) is
presented in Sec. 1; the recursive relations for
characteristic polynomials of the systems under
consideration are then derived in Sec. 2.

1. PRELIMINARY THEOREMS AND
DEFINITIONS

Let {¢,(x)}~, be a sequence of polynomials
generated by the three-term recursive relation

$o(x) =1,
$1(x) = Agx + By, (1.1)
¢n+1(x) = (Anx + Bn)¢n(x) - qusn—l(x), h 2 1,

in which 4, % 0, 4,C, # 0 for n > 1, and both x
and the coefficients 4,, B;, C; may be complex. Then
¢, is of degree n for each integer n > 0. It is well
known®* that the four kinds of polynomials under
consideration are Sturm-Liouville polynomials associ-
ated with a linear second-order ordinary differential
equation. Consequently, in this paper attention is
confined to sequences generated as in (1.1), whose
terms satisfy a differential equation of this type.

Let N be any integer greater than or equal to 3
and consider the related finite sequence {¢,(x)}Y¥_,
that is obtained from {¢,(x)},>, by restricting index
nto 0 < n < N. The results of this section are appli-
cable to both types of sequences, but they are stated
only for the finite case. The corresponding statement
for the infinite case can be obtained from that for
the finite case merely by letting N tend to infinity in
all places where it appears. Proofs of these results
can be found in Refs. 1 (Chap. 4) and 2; the proofs in
the finite case differ from those in the infinite case
only by appropriate changes in the range of the
indices.

1 F. L. Cook, Ph.D. dissertation, Georgia Institute of Technology,
1967.

2 D. V. Ho, J. W. Jayne, and M. B. Sledd, Duke Math. J. 33, 131
(1966).

3 H. L. Krall and O. Frink, Trans. Am. Math. Soc. 65, 100 (1949).

¢ G. Szegd, Orthogonal Polynomials (American Mathematical
Society, Providence, R.L, 1959), Colloquiums Publication, Vol.
XXIII.
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Theorem 1.1: Suppose that for 0 < n < N, ¢,(x)
is a solution of
a(x)y" + a1(x)y’ + [a:(x) + paly =0, (1.2)

where the prime denotes differentiation with respect
to the x coordinate and where u, is a parameter
depending on n but not on x. Then

(1) ax(x) + pp = A, = n(n — DA/2 — n(n — 4y,
0<n<N,
(i) ay(x) = ex + 0 = —A,(x + by),
and

(i) ao(x) = yx® + fx + «
= (4 — A/2)x"
+ [A(by + 3bo) — A5(by + by)]x/2
+ [Aalbob; + by) — As(beby — ¢)]/2,

where b, = B, /A, for 0<n< N—1land ¢, =C,/
A A, forl <n<N-—-1

In the sequel, whenever reference is made to the
differential equation (1.2), it is understood that the
coefficient functions have the values prescribed by
Theorem 1.1.

Definition 1.1: Define A, gy(n), and gy(n) for
1<n<N-2by
(1 A = (2by — b, — by)
X [(by — bg)® + 4(c; + ¢5)] + 9cy(by — b.),
(i) gi(m) = [(n + DA — 2n + DA)b,
— [(n — DA, — (2n — 3)41]b,
— (by + b2y + (by + 3bo)Ay,
(i) go(n) = [4nd, — (2n + DA]c, 4y
+ [(2n — 3)4;, — (4n — B)A ¢,
+ [(2n — DA, — n,)b}
+ [(n + DA, — 2n + DA)b,b, 4
— (boby — ¢1)2y + (bob, + bg)ll'

Theorem 1.2: The polynomial ¢,(x) is a solution of
(1.2) for 0 < n < N if and only if g,(n) = g,(n) =0
forl <n<N-—-2.

Differential equation (1.2) is guaranteed to be
nontrivial (the coefficient functions are not all zero)
provided A = 0; and in this case the choices 4, = 1
and 4, = [(b; — by)? + 4(c; + ¢;3)}/3¢, can be made
without loss in generality. These values of 4; and 4,
and the condition A =0 are assumed in all that
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follows. Also, the restrictions 4, # 4, (i #j,1,j=0, 1,2,---, N) are of great importance in ensuing
work. With 4, =0 and 4, =1 they are equivalent to A, #2(i +j—2)/(i+j— 1), i#j; i+j>2, i,
j=0,1,2,---, N. Under such restrictions the system of difference equations g;(n) = g;(n) =0, 1 <n <
N — 2, has no singular points; and the (unique) solution (for given b,, b;, ¢;, and 4;) is known

(Ref. 1, Chap. 4). It is given by

b, =

[(By + b)(Ae — 2) + (by — bll(n — D)% — 2) + 2]n — 2by(4, — 2) + 2b,

(1.3)
2[n(2y — 2) + 1][(n — (4, — 2) + 1]
o nl(r = 2 = 2) + 2]
*I2n = 1)(A, = 2) + 2][2n — (A, — 2) + 2]
RN 1N (n—1)(A—2)+2 _
x {/12c1 + (= 00 = Dl ~ 1) = 1]2}, 2<n<N—1. (14

Remark 1.1: For the limiting infinite-order case, it is
known (Ref. 5, Chap. 3) that whenever ¢,(x) satisfies
the nontrivial differential equation (1.2) for n > 0, it
is impossible for 1; to equal A; with i 5 j. Hence, no
singular points of the system g;(n) = gs(n) =0,
n > 1, can occur; and the solution is given by (1.3)
and (1.4) for n > 2. On the other hand, the situation
A; = 4, for unequal integers i and j in [0, N] can occur
if ¢,(x) satisfies (1.2) only for 0 < n < N (Ref. 1,
Chap. 3). Even in this case the solution to the finite
system g,(n) = g.(n) = 0,1 <n < N — 2, (provided
it exists) has been determined. Equation (1.4) and some
results of Ref. § can be used to provide a derivation of
this solution.

Theorem 1.2 and the results following can be
summarized as a single theorem.

Theorem 1.3: For 0 < n < N, ¢,(x) is a solution
of the nontrivial differential equation (1.2) in which
Ai# A, i#j50,j=0,1,2,--+, Nif and only if

() A=0,

(i) [(by — B)? + 4(cy + ¢3)]/3¢, is different from
2m — 2)[(im — 1) for2 <m < 2N — 1,

(iii) b, and c, are given by Eqs. (1.3) and (1.4) in
which 4, = [(b, — by)? + 4(c; + ¢)]/3¢,.

2. RECURSIVE RELATIONS FOR THE
SYSTEM OF FIGURE 1

Consider again the system of coupled harmonic
oscillators shown in Fig. 1. If one mass m, is coupled
to two springs having spring constants k, and k,
(n = 0in Fig. 1), the equation of motion is

(meyD?* + ko + ky)xo = 0,
where D = d/dr and x, is the displacement of m, from
the equilibrium position. If a second mass m, and third

spring with spring constant k, are added in such a
way that the resulting system corresponds to n = 1

8 J. W. Jayne, Ph.D. dissertation, Georgia Institute of Technology,
1965.

in Fig. 1, the equations of motion are

(myD? + ko + k1)xo — kyxy = 0,

—k]_xO + (m1D2 + kl + k2)x1 = 0-
If the system is enlarged by adding additional masses
and springs in the manner indicated and if NV is any

integer greater than or equal to 3, the equations of
motion for N masses and N 4 1 springs are

(n'lol)2 + ko + kl)xo — klxl = 0,
—kyxo + (M D* + ky + kp)x, — kox, =0,

—knxn—l + (mnD2 + kn + kn+l)xn - kn+1xn+1 =0,

= 0.

@2.1n
To obtain the finite sequence {¢,}Y_, of characteristic
polynomials associated with this finite sequence
{S.3_, of successively larger spring-mass configura-
tions, assume solutions of the form x; = T;e'?,
substitute into the appropriate-size system of differ-
ential equations, and then expand the resultant
determinant of the coefficient matrix of the system.
If each of the nth-order determinants (1 < n < N) is
expanded about its last row, the results are

1= —mw® + ko + ki,
¢2 = (_mlwz + ky + k)é, —
'?Sé = (—m2w2 + ke + k3)¢2 -

—ky_1Xy_o + (My_1D* + ky_y + kp)xyy

ki,
ks s

. 2.2)
(]S" = ('_Wln—lw2 + kn-—l + kn)¢n—1 - k:—l¢n—2’

by = (—my10° + ky_3 + ky)by_y — kiyo1by—2-
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Thus, if ¢, is defined to be 1 and if the characteristic
polynomials for the systems of orders n — 1, n, and
n+ 1 are viewed as polynomials in w?, they are
related by a three-term recurrence relation of the
form (1.1), in which

bn = —(kn + kn+1)/mn’

and

0<n<N-1, (23)

¢, =kimm, ,, 1<n<N-—1 (24

Consequently, each b, is negative and each c, is
positive for this finite sequence of systems. The value
of A, to be used is [(b, — by)? + 4(cy + ¢3)]/3¢, (recall
the discussion immediately following Theorem 1.2),
where by, by, ¢;, and ¢, are as specified in Eqgs. (2.3)
and (2.4).

Remark 2.1: Our attention has been called to the
following interesting physical interpretation for the
characteristic polynomials of this sequence of systems;
a more detailed discussion can be found in Ref. 6.
Suppose ky > 0 (so that the system of Fig. 1 is fastened
at both ends) and let u, denote the displacement
amplitude of mass m,,. Set u, = 1. Then u,,, thought
of as a function of parameter w?, is related to ¢, by
$o(@?) = up(@?) and $,(0?) = kpky - kyu(w?) if
n>1. For a given system Sy of order N >3,
$o(@?) = uy(@?), ¢, (0 =kiky '+ ku(0?) if 1<
n< N —1, and ¢p(w?) = kik, - - - kyuy(w?), where
uy is the displacement amplitude of the last mass my
in system Sy, of order N + 1. Thus, the zeros of
uy(w?) are precisely the squared natural frequencies of
system Sy .

For the electrical analog of the system depicted
in Fig. 1, the differential equations and characteristic
polynomials are readily obtained from (2.1) and (2.2)
by replacing m;, k;, and x; by inductance L,, the
reciprocal of capacitance, D;, and charge Q;, respec-
tively—the analogy being drawn only if k; > 0. In
this case conditions (2.3) and (2.4) become

by=—(Dy+ Dpy)/D,DysL,, 0K n <N —1,
(2.5)

and
¢n = (DL,L, )7,

1<n<N—1 (26

Once again, each b, is negative, each ¢, is positive,
and A;is computed from [(b, — by)? + 4(c; + c)]/3¢,.

8 H. B. Rosenstock and R. E. McGill, J. Math. Phys. 3, 200 (1962).

1673

3. CHARACTERIZATION OF HERMITE,
LAGUERRE, BESSEL, AND JACOBI
POLYNOMIAL SEQUENCES

The following four pairs of theorems provide
necessary and sufficient conditions that a sequence
{$n(x)},., generated as in (1.1) or its related finite
sequence {¢,(x)}Y_, (N > 3) be—apart from a deter-
minable linear change of variable and computable
multiplicative factors independent of x—a sequence
(finite sequence) of one of the four types of classical
polynomials. The conditions are formulated in terms of
only the coefficients b, and ¢,, which are defined in
Theorem 1.1. Consequently, question (i) and the por-
tion of question (iii) related to question (i) can be
answered by use of these theorems in which b, and ¢,
are identified as in (2.3) and (2.4).

For efficiency in application, the theorems are
stated separately rather than lumped into “if and
only if” theorems. Moreover, proofs are provided
for only two of the four pairs (the Hermite and Jacobi
cases) because techniques used are much the same in
all four cases. Proofs for the remaining two pairs can
be found in Ref. 1, Chap. 3. Finally, as in Sec. 1,
results are stated only for the finite case with arbitrary
N > 3; extensions to the infinite case can be obtained
in the natura] manner.

In all that follows, N is a fixed but arbitrary integer
not less than 3, and D, denotes a nonzero term
independent of x.

Definition 3.1: Let n be a nonnegative integer. The
Hermite polynomial of degree n, denoted by H,, is
defined by

_[n/Z] (—l)kn' (2t)n—2k
B0 =2 k! (n — 2k)!

k=0
where [ ] denotes the greatest integer function.

b

Theorem 3.1: If (A) 1, = 2, (B) b, = b,, and (C)
b, and c, are given by (1.3) and (1.4) for 2 <n <
N —1, then ¢,(x) = D, H,((x + by)(2c,)?) for
0 < n < N, where the principal square root is taken.

Proof: If conditions A-C hold, Theorem 1.3 implies
that ¢,(x) satisfies a differential equation of the form
(1.2) in which A, =1, 4, =2, and b, = b,. Con-
sequently, ¢,(x) is a solution of

oy —(x+b)y +ny=0 3.1
(where the prime denotes dfdx) for 0 < n < N.
Under the change of variable x = (2c)}t — b,,

where the principal square root is taken, (3.1) trans-
forms to the Hermite differential equation

y' =2ty +2ny =0, (3.2)
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where the prime denotes d/dt. The only polynomial
solutions of (3.2) are (to within multiplicative con-
stants) the Hermite polynomials. Hence,

$a(x) = D H,((x + b)(2c) ) for 0<n< N

Theorem 3.2: If there exist a nonzero constant u and
a constant » such that ¢,(x) = D, H,(ux + ») for
0 < n < N, then b, and c,, satisfy conditions A-C of
Theorem 3.1.

Proof: Whenever such constants exist, it follows
from (3.2) and the chain rule for differentiation that
¢, (x) is a solution of

@Yy + (—x —v[w)y +ny=0 (3.3)
(where the prime denotes d/dx) for 0 < n < N. Equa-
tion (3.3) is a nontrivial differential equation of the
form (1.2) in which A4; =1 and A, = 2. Hence, by
Theorem 1.3, condition C is satisfied; and from part
(iii) of Theorem 1.1, 0 = 8 = (b, — by)/2.

Definition 3.2: Let n be a nonnegative integer and a
any complex number. The extended generalized
Laguerre polynomial of degree n, denoted by L2, is
defined by

a — < a + n . k
LX) “,Zo(n * k)( DRk,
where .
(“*") =TI+ k +))in — o
n—k =1

if0<k<n-—1land (*}")=1.

The definition of L? given here agrees with that of
the classical generalized Laguerre polynomial of
degree n whenever a > —1.

Theorem 3.3: If (A) 4, =2, (B) b; # b,, and (C)
b, and c, are given by (1.3) and (1.4) for 2 <n <
N — 1, then for 0 < n < N, ¢,(x) = D, L:(ux + v),
where a = 4c,(by — b)) 2 — 1, u = 2/(by — b,), and
v = 2(by + 2¢1/(by — by))/(by — by).

Theorem 3.4: 1f there exist a nonzero constant u
and constants ¥ and a such that ¢ (x) = D, L2%(ux + »)
for 0 <n <N, then b, and c, satisfy conditions
A-C of Theorem 3.3.

Definition 3.3: Let n be a positive integer, b a non-
zero complex number, and a a complex number not
an integer in [—2(n — 1), —(n — 1)]. The extended
generalized Bessel polynomial of degree n, denoted
by B{? is defined by

n

B0 =3 (Mo + k+a =29 (),

%=0 b
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where (?) is a binomial coefficient,
k
m+k+a-2"=T[(n+k+a—j—1)
=1

if 1 <k<n, and (n 4+ a — 2)"® = 1. For nonzero
complex b, B{V(t) = 1.

The definition above agrees with that of the general-
ized Bessel polynomial of degree n provided a is other
than a nonpositive integer.> The condition imposed
on a for n > 1 is the minimal one to guarantee that
B{*? is a polynomial of degree exactly n.

Theorem 3.5: 1f (A) A, #~ 2, (B) (4, — 1)2(by — b2 +
4i(Ay — 2)c; =0, (C) b, and ¢, are given by (1.3)
and (1.4)for2 < n < N — 1,and (D) 4, # 2(m — 2)/
(m—1)for2 <m< 2N — 1, then

¢u(x) = D, B*d(ux +») for 0 <n <N,
where
a=2[(4—2), p=204— 2P — b)i — 1),
and

v= (g — 2)[(b + by)4,

— (3by + b)]/(4 — 1)(by — by).

Theorem 3.6: If there exist a nonzero constant u
and constants v, a4, and b such that

$a(x) = DB (ux + v)
for 0 <n <N, then b, and c, satisfy conditions
A-D of Theorem 3.5.

Definition 3.4: Let n be a positive integer and let
a and b be any two complex constants such that
a + b is not an integer in [—2n, —(n + 1)]. The gen-
eralized Jacobi polynomial of degree n, denoted by
Ple s defined by

Pev) = (TG +))
nili=1

+§[(Z)f_{l(n+a+b+j)

x ﬁ(a 4k + m)(t — 1)/2)1

+ H (n+a+ b+t — 1)/2)"},

where the middle summand is omitted when n = 1.
For any two complex numbers a and b, P{?(r) = 1.

Definition 3.4 agrees with that of the classical
Jacobi polynomial of degree n provided® a > —1 and
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b > —1. The condition imposed on a + b for n > 1
is the minimal one to guarantee that P{*" is of
degree n.

Theorem 3.7: 1f (A) 1y # 2, (B) (g — 1)¥(by — by)* +
43y(As — 2)c; # 0, (C) b, and ¢, are given by (1.3)
and (1.4)for2 < n < N — 1,and (D) 4, # 2(m — 2)/
(m—1)for2 <m< 2N — 1, then

$.(x) = D, P'@Y(1 — 2ux ++)) for 0<n <N,

where

a= —1+20x; + bp)/(A — 2)(x1 — x3),
b= =14 2(x; + by)/(A — 2)(xz2 ~ X1,
p=1/(x; —x) and v = —x/(x, — x1)-

Here
Xy = [Ag(by + b)) — (by + 3b0))2(2 — 4)
+ {[(22 — 1)*(by — b1)*
+ 444 — 2)c]/42 — L)
and
x; = —X3 + [As(bo + b)) — (b, + 369))/(2 — 23)

are the two distinct zeros of the coefficient of y” in
(1.2) (the square root used. being the principal one).

Proof: If conditions A-C hold, Theorem 1.3 implies
that ¢,(x) satisfies (1.2) in which 4; =1, 4, #0,
and discriminant D of the coefficient of y* is nonzero.
Hence ¢,(x) is a solution of

(1 = Af2)(x — x)(x — x,)y" — (x + bo)y’

+ [n(n — DA/2 — n(n - 2)]y =0, (3.4)

where the unequal quantities x, and x, are as specified
in the statement of the theorem. If the change of
variable x = }[x; + x, — (x; — x,)t] is made, (3.4)
transforms to the Jacobi differential equation

A=y +b—a—(a+b+21y

+nrmn+a+b+1y=0, (3.5

in which ¢ and b are as stated in the theorem. Con-
dition D forces 2/(A; — 2) — 2 = a + b to be other
than an integer in [—2N, —2]. With this restriction
on a + b, a straightforward argument shows that the
only polynomial solutions of (3.5) (to within multi-
plicative constants) are the generalized Jacobi poly-
nomials. It follows that

$a(x) = D PV — 2(x — x)/(xs — x))]
for0<n<N.
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Theorem 3.8: If there exist a nonzero constant u
and constants », @, and b such that

$,(9) = DPSV[1 — 2ux + )] for 0<n< N,
then b,, and c,, satisfy conditions A-D of Theorem 3.7.

Proof: From (3.5), the chain rule for differentiation,
and the fact that a + b # —2, it follows that ¢,(x)
is a solution of

(ux + )1 —px =)

wa+b+2)
Sl ko,
(@a+b+2) 0
a+b+2

for 0 < n < N. Equation (3.6) is a nontrivial differ-
ential equation of the form (1.2) in which 4, =1,
A, 7% 2, and discriminant D # 0. By Theorem 1.3,
condition C is satisfied; and since 2/(4; — 2) — 2 =
a + b is not an integer in [—2N, —2],

A #2m—=2)m—1) for 2<m<2N -1

In addition to providing constructive answers to
question (i) and a portion of question (iii), Theorems
3.1-3.8 and their extensions to the infinite case
indicate at what point (if any) the sequence of systems
S, first fails to meet the requirements. If all con-
ditions are satisfied except the representations for b,
and ¢, given by (1.3) and (1.4) (and condition D
in the Bessel and Jacobi cases) and if j is the largest
integer in [3, N) such that these exceptions hold true
for 2<n<j—1 (and 2 < m<L2j— 1), then
systems Sy, Sy, -, S; will have characteristic poly-
nomials ¢,(w?) that are all of one classical type; but
the finite sequence of systems {S,}*% will not meet
such requirements.

A computational advantage that occurs when a
spring-mass chain is one of the four types, is the
relative ease with which the natural frequencies can
be determined. Since the linear change of variable
and other parameters that occur in characteristic
polynomial ¢, can readily be calculated, the problem
of determining the natural frequencies of such an Nth-
order system often reduces merely to looking up the
N tabulated zeros of the type of polynomial involved.
Even if a tabulation of the desired zeros has not
been made, a numerical compilation of these zeros
should not be difficult to obtain because of the detailed
available knowledge about them.? Clearly the same
comments are applicable to the j natural frequencies
of any subsystem S;, where 1 <j < N — 1.
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4. ADDITIONAL NECESSARY CONDITIONS
FOR CONSTRUCTIONS

In question (i) the problem of physical realizability
does not arise: the physical system is already built,
so the spring constants and masses are a priori
positive except possibly for k,. The opposite is true in
the study of question (ii). Theorems 3.1-3.8 state
necessary and sufficient conditions on

b,= —(k,+ k. )/m, and c, =kimm, ,

which are to be met in the mathematical representa-
tion of k, and m,; but the added physical require-
ments that k, >0 for 1 <n<N, k20, and
m, > 0for 0 <n< N — 1, must also be taken into
account. Such requirements imply that b, <0 for
0<n<LN—-1 and ¢,>0 for 1<n<N-1
Based on these sign constraints, the next four theorems
provide additional necessary conditions for construc-
tion of an Nth-order spring—mass system of one of the
desired types.

Notice first that if 4, =2, Eqs. (1.3) and (1.4)
reduce to

bﬂ = bo + (bl b bo)n (4.1)

and
"¢, = (n* — n)(by — bo)*/4 + ncy, (4.2)

respectively. From these relations and Theorems
3.1-3.4, the first two of the four theorems are evident.
They are stated simply for completeness.

Theorem 4.1: In the Hermite case, ¢, > 0 for
1<n<<N—1and b, <0 for 0<nN—~-1if
and only if by < 0 and ¢; > 0.
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Theorem 4.2: In the extended generalized Laguerre
case, ¢, >0 for 1<n<N-1 and b,<0 for
0<n<N-1if and only if b, <0, b <0,
b, < by(1 — 1/(N — 1)), and ¢; > 0. '

Remark 4.1: At this stage it is worth noting that
any Nth-order extended generalized Laguerre system
which is built will be of the “usual” generalized
Laguerre type (that is, a > —1); for by Theorems
3.3-3.4, the characteristic polynomials are ¢,(w?) =
D L3 (puw? + ») for 0 < n < N, where

a= 4C1/(b0 —_ b1)2 e 1 > —1.

Theorem 4.3: In the extended generalized Bessel
case, ¢, >0 for I<n<N-—1 and b,<0 for
0<n<N-1lifandonlyif b, < 0, b, <0, c; > 0,
2 — 2/(2N — 3) < 4, < 2, and either

by < bo(iz—_zf){ TR+ -— 2)(122 — 2N — 1)}

(4.3)
or

b"(ig_—llz){l Sy AL

R T e
A —1 [2 4+ (N = 3)(% — DN —2)
4.4
Proof: Suppose first that ¢, > 0 and b, < 0. Then
(Ag = 1)*(bo — b1)* + 42(4; — 2)e; = 0

implies 0 < 1, < 2; and the solution for c,, displayed
in (1.4) reduces to

erdanl(n — 24, — 2) + 2]

Cn

T [@n — D — 2) + 2121 — 3y — 2) + 20[(n — Dk — 2) + 1T

4.5)

for 2<n<N—-1 Write E,=(n—2)4—2)+2, F,=2n— )4, —2)+2, and G, = (2n —3) x
(A2 — 2) + 2. Since c,, E,, and G, are positive, (4.5) implies F, > 0. Thus A, > %, and the inequality

involving A, is verified when N = 3. Suppose that N >4 and E;, F;, and G; are positive for some
integer j satisfying 2 <j < N —2. Then G;,;=F;>0. Since 4,<2, G, < E, for n>1; conse-
quently E;.; > 0. Since c¢;, >0, (4.5) implies F; ;> 0. Hence E,, F,, and G, are positive for
2 <n< N - 1.1t follows that 4, > 2 — 2/(2N — 3). To deduce (4.3) or (4.4), first set 6 = 2 — A,. Then
0<d<2/2N-3),0<(n—1d<lfor2<n<N—-1,and 0<nd<1for2<n<N -2 Interms
of 8, (1.3) can be written as

_[5,(0 = 8) = bo(1 + )12 — (n = 1)d]n + 2by(1 + 9)
- 2(1 — nd)[1 — (n — 1)4)

for 2<n < N-—1; and the denominator will be
positive for 2 < n < N — 2. According to whether
(N—1¥<1or (N—1)¥§>1, Eq. (4.3) or (4.4)
will occur. For suppose (N — 1) < 1. Then 6, < 0
for 2<n< N-1 if and only if the numerator

by,

(4.6)

of (4.6) is negative for 2 < n < N — 1. This is true
if and only if

b<n(EE Y-
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which is equivalent to (4.3) since the expression in
braces is a positive, strictly increasing function of
n and since b, and b, are negative. If (N — 1)é > 1,
b, < 0for2 < n < N — lif and only if the numera-
tor of (4.6) is positive when n =N — 1 and (4.3)
holds with N replaced by N — 1. The last statement
implies inequality (4.4).

Conversely, suppose that by, <0, b, <0, ¢; > 0,
2 —2/(2N —3) < A3 < 2, and that either (4.3) or
(4.4) holds. All steps taken in the necessity part of
the proof for the derivation of (4.3) and (4.4) are
reversible. So b, <0 for 0 <n < N~ 1. When
2-2/]QN—-3) <2, <2,then E,, F,, and G, are
positive for 2 < n < N — 1. Consequently, by (4.5),
c,>0for2<n<<N-1,

Theorem 4.4: In the generalized Jacobi case,
c,>0for1<n<N-—landd, <0for0<n<
N—1lifandonly if b, <0, b; <0,¢,>0,2—2/
(2N — 3) < A, and either (4.3) or (4.4) holds.

Proof: The proof is similar to that of Theorem 4.3
and is, therefore, omitted. A complete proof can be
found in Ref. 1, Chap. 5.

Remark 4.2: It can easily be shown (Ref. 1, Chap. 5)
that any physical Jacobi-type system of order N will
have characteristic polynomials of the classical
Jacobi type if and only if A, > 2. Thus, if 2 — 2/
2N =3 <1 <2and 4, # (2N — 3)/(N — 1), the
characteristic polynomials all fall into the generalized
Jacobi category. Such behavior is in contrast to that
of physical Laguerre systems (see Remark 4.1).

5. SOME CONSTRUCTIONS OF THE FOUR
TYPES OF SYSTEMS

Once by, by, ¢;, and 4, are specified, b, and ¢, are
completely determined by (1.3) and (1.4). The con-
struction of any one of the desired systems therefore
hinges on a choice of these parameters such that (1)
all necessary conditions on b, and ¢, hold for the
particular type system and (2) with the possible
exception of ky = 0, each component of the solution
pair {k,,, m,} to finite difference system (2.3) and (2.4)
is positive, Equation (5.1) below is helpful in deducing
appropriate choices.

Suppose that a proper choice of by, b, ¢;, and 4,
is made. Then ky + k; = —myb, and

k:bn/(k@z + kﬂ+l)cn =M, = (kn-«l + kn)/bn—lr

for 1 <n < N— 1 If it is further assumed that &,
is chosen as positive, the last equation can be rewritten
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Upyr = bn—lbn(l - I/Un)/cn: for 1 _<.. n S N-1 ’
(5.1)

where v, =1+ k,1/k,,0 < n< N —1.
For the Hermite case, difference system (2.3) and
(2.4) reduces to

kp+ kpy = —myb,, 0<n<N-1, (52
ki=nm, ym,ec;, 1<n<N-—1; (53)
and (5.1) becomes

Upi1 = bg(l - 1/1),”)/7101, for 1 ﬁ n S N — 19
(5.4)

with v, =1+ ki/ky. Let k>0, &k > k,, and
my >0 be chosen and set by = —(ky + ky)/m,.
Then set ¢, = kb[4(N — 1), where k is a number in
(0, 1]. With these choices v; > 2; and, by finite
induction,

Upya = 4N — DA — Yo, )k, > 42k > 2,

for 1<n<N-—1. Hence, k,./k,>1; since
ky 2> ko> 0, k, > 0 for 0 < n < N. Consequently,
if k, is computed from (5.4), it is positive and
satisfies

ki = ncl(kn—l + kn)(kn + kn—i—l)/b%’

for 1<n<N-1. (59

Use these quantities in (5.2) to compute m, for
1<n< N—1. The m, so calculated will all be
positive; and (5.3) will be satisfied by virtue of (5.5).
The indicated choices for by, by, ¢;, and 1, thus
guarantee that k, and m, computed by means of
(5.2) and (5.3) will all be positive. By Theorem 3.1

$u(@®) = (= 1)"D,H,[(N — 2)[k)} (b, + 1)],
0<n<N.
To satisfy the necessary conditions
(A2 — 1%(bo — b)® + 44,(A2 — D, = 0,

Ay # 0, and A, 5 2 in the Bessel case, b, cannot equal
b, and by, &, ¢,, and A, must be related by

Ao =1 £ [dey/((By — b)) + 4c). (5.6)

The condition 2 — 2/(2N — 3) < 4, < 2 implies
Ay > %; so only the positive square root is acceptable
in (5.6). Set 4, = 2 — 4/(4N + 1). Then all necessary
conditions on A, are met; and, in fact, 1, % 2(m — 2)/
(m~— 1) for m > 2. With this choice of 1, (5.6)
implies

oy = (bg — b)*AN — 3)3/324N — 1), (5.7
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and since (N — 1)(2 — ;) < 1, the proof of Theorem
4.3 shows that b, and b, must be related by (4.3).
Thus

(N — 2)2N + 3)(dN + 5)
(N — )N + 54N — 3)°

b, < by (5.8

Lemma 5.1: Let by, b,, and c; be related by (5.7)
and (5.8) and subject also to by < 0, b, < 0. Then a
choice of such quantities can be made so that b,,_b,/c,,
the coefficient of (1 — 1/v,) in (5.1), is not less than
4forl < n < N — 1, where b, is determined by (1.3),
¢, is determined by (4.5), and A, = 2 — 4/(4N + 1).

Proof: Choose by < 0 and set
by = 2N®b,/(2N® + 1), (5.9)
¢; = (4N — 3)°b3/32(2N® + 1)’(4N — 1). (5.10)

Then (5.7) and (5.8) hold; and a straightforward
calculation shows that the proposed inequality is
equivalent to
8[4(N — n) + TI[4(N — n) + 3|{32N3(N — n)?
+ 48N3(N — n) + 10N® — 16N%1 + 8Nn? + 16N?
— 32Nn + 10n2 4+ 24N — 15n + 5}
X {32N3(N — n)? + 112N3(N — n) + 90N®
—~ 16 N1 + 8Nn® + 32N? — 48Nn + 10n? + 64N
— 350 + 30} > [4(N —n) + 1][4(N — n) + 9]
X (4N — 3)}(4N + 1)*(4Nr — 2n® + 5n),
I1<n<N-1

for (5.11)

The minimum value for each of the two terms in
braces in (5.11) occurs when n = N — 1, and these
minimum values are positive. Thus, for 1 <n <
N — 1, each term in parentheses, brackets, or braces
is positive. Because of this it is clear that (5.11) can be
proved by verifying a modification in which all
bracketed terms are deleted. Since both terms in
braces are positive, the minimum value of the left
side of (5.11) less the two bracketed terms occurs
when #n = N — 1. The maximum value of the right
side with the bracketed terms deleted also occurs
when n = N — 1. Hence, to establish the lemma it
suffices to verify (5.11) less all bracketed terms when
n=N—1. A routine computation of the Ilast
condition completes the proof.

With the aid of Lemma 5.1, examples of Bessel
systems of order N can easily be provided. Choose
ky> 0,k > ky,my > 0andset by = — (ko + ky)/my.
Let b, and ¢, be given by (5.9) and (5.10), respectively.
Then, from the proof of the lemma, the fact that
v; > 2, and from finite induction, v, > 2 for
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1 <n< N.Soif k, is computed from (5.1) in which
b, is given by (1.3), ¢, is specified as in (4.5), and
Ay =2 — 4/(4N + 1), then k,, will satisfy

ki = cn(kn—l + kn)(kn + k'n+l)/bnbn—l (5'12)

for 1 <n < N—1 and will be positive. Use these
quantities in (2.3) to compute m, for ] <n < N — 1.
The m,, so calculated will all be positive; and (2.4)
will be satisfied by virtue of (5.12). By Theorem 3.5,

¢ (0®) = D B (uw? + ) for 0<n <N,
where
a=—(4N + 1)/2,
u = 32(2N® + 1)J(4N + 1)(4N — 3)b,,
» = 4(16N® + 4N + 5)/(4N — 3)(4N + 1),

and the polynomials are of the classical generalized
Bessel type.

An appreciable number of “closed-form™ construc-
tions for the Laguerre and Jacobi cases are known.
Some of them are now presented. In the Laguerre
case, a constructive scheme that furnishes examples
other than those to be given is also available (Ref. 1,
Chap. 5); its technique is similar to the one already
elaborated in the Hermite and Bessel cases.

To begin with, an Nth-order spring-mass configura-
tion in which my, >0, k; > 0, k, = nk, for 0 <
n< N, and m, = m, for 1 < n < N — 1 furnishes
an example of an Nth-order Laguerre system in which
ko = 0 (the left end of the configuration is free). By
Theorem 3.3, the characteristic polynomials of this
system are ¢, (w?) = D, L2(mw?k,) for 0 < n < N.

As an example of a Laguerre system in which
ko> 0, choose ko >0, my>0, k, =kq for 1 <
n<N, and m,=my/(n+1) for 1 <n< N-—1.
In this case ¢,(w*) = D, Ll(mw?/k,) for 0 < n < N.
The construction can be generalized as follows:
Choose kg > 0, my > 0,a > 0,

ky=nlkyfala+ 1) - (a+n-1)
for 1<n<N,and m,=nlmyf(a+1)---(a+n)
for 1 <n < N — 1. Then each k, and m, is positive,
and all conditions of Theorem 3.5 are satisfied. So
¢, (w?) = D, Li(am,wfk,) for 0 < n < N.

As an example of a family of Nth-order Jacobi-type
systems in which k, > 0, first choose r > 0, k3 > 0,
and my > 0. Then set k, = kgr® for 1 < n < N and
m, = my" for 1 <n < N — 1. By Theorem 3.7,

$.(@”) = DPEV[1 — 2uc® + 9],
for 0<n<N,
where a = b = §, u = myfdkyr?, and
v = —(rt — 1)2/4rt.
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It follows that

¢’n(w2) = (_l)nDnVn[2(:uw2 + 1") - I]a
for 0 < n < N, where V, is the Tchebycheff poly-
nomial of degree n of the second kind. Note that the
simple case in which all spring constants are equal
and all masses are equal is included within this

family. Such a model is sometimes appropriate for
structure theory of homogeneous media. In this case

95"(602) = (_l)nDnVn(_I + m0w2/2k0)’
for0 <n<N.

An example in which k, = 0 is furnished by the
following. Choose my, >0 and k, > 0. Then set
k, =nk, for 0 <n <N and m, = (2n + 1)m, for
1 <n< N— 1. From Theorem 3.7,

$n(w?) = (=1)"D, P, (=1 + mew?[ky),

for 0 <n < N, where P, = P is the Legendre
polynomial of degree n.

As a final example of a Jacobi system, let my > 0,
k,=my22n + 1) for 0 <n< N, and m, = mg/
(n+ Dforl <n< N-—1. Then

é (@) = (—=1)"D POV — 1)
for0 < n < N.

6. THE INFINITE-ORDER CASE

The remainder of the answer to question (iii) is
provided in this section. Specifically, that portion of
the question which relates to question (ii) is developed.
For the infinite-order case, the following three
theorems show that of the four possible kinds, only
Jacobi- and Laguerre-type systems can ever be
generated; and the latter type can occur only if
relatively stringent conditions on m, and k, are
satisfied.

Theorem 6.1: For a given set of values m,, m,, k,,
ky, ki, it is impossible, by successively adding
springs and masses as shown in Fig. 1, to construct
an infinite-order system of harmonic oscillators such
that ¢,(w?) = D, H,(uw? + ») for every nonnegative
integer n.

Proof: Suppose the contrary. Then from Egs.
(2.3), (2.4), and (4.1) and (4.2) in which b, = b,,
(kn + kny)/m, = (ko + ky)/m,, (6.1)
kim,m,_, = nkilmm,, for n>1. (6.2)
From (6.2) it follows that
kﬁ/mﬁ = nm,_ ki/mem;m,,

kip/meuy = (n + Om,  kifmemim,;
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and when these expressions are inserted into (6.1), the
result can be written as

(ko + kl)/ mo"%
= ky[(mufm, )t + (1 + Un)im o /m 2 (mempt.
6.3)

Suppose lim,_,, m, ,/m, = L? > 0. Then, when the
limits of both sides of (6.3) are taken, the result is
0 = k(L + 1/L)[(mgmy)}, a contradiction. If

lim 22 — ¢

n-o0 M,
or if this limit does not exist, the left side of (6.3) still
has limit zero, but the right side has no limit—
another contradiction.

Theorem 6.2: For a given set of values m,, m,, k;,
k;, ks, it is impossible, by successively adding springs
and masses as shown in Fig. 1, to construct an infinite-
order system such that ¢, (w?) = D B (uw? + »)
for every nonnegative integer n.

Proof: Suppose otherwise. Then k2/mm, = c, >
Oforn > 1and (k, + k,.1)/m, = —b,, > Oforn > 0.
From Theorem 4.3, 2 —2/2N —3) < 1, < 2 for
every integer N > 3, a contradiction.

Theorem 6.3: For a given set of values m,, m,, k,,
ki, ks, it is possible, by successively adding springs
and masses as shown in Fig. 1, to construct an infinite-
order system of harmonic oscillators such that
¢, (0 = D, L%(uw? 4 ») for every nonnegative inte-
ger n only if

. m
lim = =1,

n~w M,
lim kny =1,
and B
i Gt k) (ko)
n—o0 HM,_y 2m, 2m,

Proof: Suppose first that an infinite-order Laguerre-
type system has been constructed but

. m
lim —2 =1
n—=w M,

does not hold. Then ¢, > 0 for n > 1 so that the
expression for b, in (2.3) can be rewritten as

bn/n = _(Cnmn—1/n2mn)%
- (cn+1mn/(n + 1)2mn+1)%(n + 1)/”9 (6'4)
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for n > 1. From Egs. (4.1), (4.2), and Theorem 4.2,
lim by = b, — by,

n—=wo N

and b, < b,. Suppose that

Mpyr I2
- 2

lim
nso M,
where L >0 and L # 1. Then, as n— o0, (6.4)
yields
(by — by) n (by — by)L
2L 2

which implies L = 1, a contradiction. If L =0 or
L = + oo, the right side of (6.4) has no limit—another
contradiction. Finally, suppose that the sequence
{m,1/m,} of positive terms has no limit but does have
a finite limit inferior (an infinite limit inferior implies
L=+, a case already considered). Let A4 =
lim inf (m,/m,_,)t. Then 4 >0, and there exists a
subsequence {(m, [m, _;)}} with limit 4. Equation
(6.4) must hold for all terms of this subsequence;
hence, as n, — o, (6.4) yields

by — by =

’

=l+lim

A Np—> 0

3
(P2 a4 69
m 4

ng

provided that 4 # 0. If 4 = 0, the same contradic-
tion arises as was noted above under the assumption
that L = 0. From (6.5) it follows that A = 1. Now
let B = lim sup (m,/m,_;)t. Then B > 1. Denote a
subsequence which converges to B by {(mm+1/m,,j)‘3}.
Equation (6.4) must hold for the terms of this subse-
quernce also. So

2=|:1im

nj—+ o

-1
(m"" ﬂ +B>B+L, (6.6
m, 4 B
provided that B is finite. In this case B = 1, so that
A = B, which contradicts the assumption that
{m,,/m,} has no limit. If B is not finite, the same
contradiction arises from (6.4) (with the terms of
the subsequence which converges to B inserted) as was
noted under the assumption above that L = + oo,
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At this stage it has been established that any
infinite-order Laguerre-type system will have

lim
n—w M,

Myt =1

This fact makes it easy to complete the proof.
From (2.4), in which c,, is given by (4.2) forn > 1,
there follows

2
1imk"—;f1=1im ('"““- Mo -C"“) =1, (6.7)
n—rw K, ns0o\ M, M,y C,
2
ﬁm(k”)=Mn(M-%)=ﬂh—%ﬁ
n—o \BM,_,4 n»oo \M, 4, N

(6.8)
Since b; < by and since k,/nm, , > 0, k, . /k,; >0
for n > 1, it follows that lim,_, , k,.,/k, = ! and
lim,_, o k,/nm,_; = (by — by)/2. This completes the
proof.

To furnish constructions of either infinite-order
Laguerre- or Jacobi-type systems, one need only
extend the range of index # to all nonnegative integers
in each of the examples presented in Sec. 5. Un-
fortunately, this procedure will not convert all finite
order Laguerre- or Jacobi-type systems to the corre-
sponding infinite-order ones. In particular, a large
class of systems is known (Ref. 1, Chap. 5) having
the following property: For each preassigned integer
N > 3, formulas for k, and m, can be given which
provide a Laguerre-type system for any positive
n < N, but fail to do so for some n > N.

As a final point, note that Theorem 4.4 implies that
any infinite-order Jacobi-type system will have 4, > 2.
Consequently, by Remark 4.2, generalized Jacobi
polynomials in the infinite case cannot occur; the
characteristic polynomials generated will be of the
classical Jacobi type.
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Kernel Integral Formulas for the Canonical Commutation Relations of Quantum Fields.*

I. Representations with Cyclic Field
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We investigate the kernel or group integral for the canonical commutation relations introduced by
Klauder and McKenna and its generalizations. For the finite case the kernel integral formula has been
proven by means of the Schrodinger representation. Motivated by the close similarity of the Schrodinger
representation to the form of a general representation with cyclic field, we examine these representations
with respect to kernel integral formulas. A general criterion is derived in which the dimensionality of the
test function space does not enter, i.e., it is independent of the number of degrees of freedom. In this way
the finite and infinite case can be treated on equal footing. The criterion contains as special cases the
kernel integral formulas of Klauder and McKenna for finitely many degrees of freedom and for direct-
(or tensor-) product representations of fields. For partial tensor-product representations we obtain a
somewhat modified formula. After these applications, a considerably sharpened form of the criterion is
derived in which only the vacuum expectation functional enters. Under a certain cyclicity assumption it
is shown that the validity of a kernel integral for just some cyclic vector implies its validity for all vectors.
It is further shown that the basis-independent integral defined by a supremum over all bases of the test
function space U can be replaced by an ordinary limit over a kind of diagonal sequence through finite-
dimensional subspaces of U, In the last section a representation is constructed which possesses a cyclic
field but does not fulfil a kernel integral formula; this is an instructive illustration of a general theorem

to be proved in II of this series of papers.

1. INTRODUCTION

In a quantum field theory which is based on the
canonical (equal-time) commutation relations between
the field @ and the conjugate field II, one has to look
for a realization of the fields as operators in a Hilbert
space. The operators have to satisfy

[D(x), [I(x")] = id®(x — x'), (1.1)

with the other commutators vanishing. This problem is
completely analogous to that of quantum mechanics
where one starts with [Q, P] = i. There one knows
that an irreducible representation is, up to unitary
equivalence, uniquely given by the Schrodinger repre-
sentation if one makes certain assumptions on the
domains of definition of the operators. In quantum
field theory the situation is completely different. Here
uncountably many inequivalent irreducible represen-
tations exist, so that the correct choice of a repre-
sentation for physical applications becomes an
important problem.

Mostly one takes the Fock representation, as for
instance in the conventional formulation of quantum
electrodynamics. However, one immediately en-
counters a fundamental difficulty in the form of
Haag’s theorem.? The Fock representation describes

* Based on a part of the author’s Habilitationsschrift, “Aspekte
der kanonischen Vertauschungsrelationen fiir Quantenfelder,” Uni-
versity of Marburg, 1968. Paper II, with the subtitle “Irreducible
Representations,” will appear shortly in this same journal.

t Address from October 1969: Institut fiir Theoretische Physik
der Universitit, Gottingen, Germany.

1 For an early reference see L. Garding and A. Wightman, Proc.
Natl. Acad. Sci. US 40, 622 (1954).

2 R. Haag, Kgl. Danske Videnskab. Selskab, Mat.-Fys. Medd.
29, 12 (1955).

in a satisfactory manner the free field; but, according
to Haag’s theorem, the free field and interacting field
are inequivalent to each other, so that, for instance,
the interaction picture does not exist in a well-defined
way. Some of the divergences which appear in the
usual theory may well be connected to this, and the
correct choice of the representation may become
decisive. There exist exactly soluble field-theoretic
models® which do not employ the Fock representation
and for which one obtains always incorrect results
with the usual perturbation and Green’s function
methods.*

Unfortunately, the representations of the canonical
commutation relations (CCR) possess a rather com-
plicated structure, and one still has no complete
classification of all representations up to unitary
equivalence; only for a very special class has this
been carried through.” One does have a number of
general existence theorems, and one can characterize
the representations either by measures® or by vacuum
expectation values of the fields.” But in general it is
impossible to construct these measures explicitly. The
connection between the measures and the vacuum
expectation values is, therefore, more of theoretical
interest. Both methods are not very appropriate for
constructive realizations of representations useful

# J. R. Klauder, J. Math. Phys. 6, 1666 (1965).

¢ H. D. I. Abarbanel, J. R. Klauder, and J. G. Taylor, Phys. Rev.
152, 1198 (1966).

® J. R. Klauder, J. McKenna, and E. J. Woods, J. Math. Phys.
7, 822 (1966).

¢ See Ref. 1 and I. S. Lew, Ph.D. thesis, Princeton University,

1960 (unpublished).
? H. Araki, J. Math. Phys. 1, 492 (1960).
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for practical applications. In some cases® one can
employ a generalization of the method used in the
Fock representation.

In this context some new results on irreducible

representations of the commutation relations

[Q;, P] = idy

for n degrees of freedom are interesting. It has been
shown® that, by means of the so-called reproducing
kernel, the operators Q,, P, can be realized in spaces
of continuous functions of 2»n variables, in contrast to
the Schrodinger representation, where one needs
equivalence classes of square-integrable functions of
n variables. The scalar product in this space is defined
by integration over the 2n variables, a kind of group
integral. The Schrodinger representation for finitely
many degrees of freedom is quite well known and,
therefore, the importance of such a realization lies
probably mainly in its application to coherence prop-
erties in quantum optics.*

For infinitely many degrees of freedom, that is, for
Bose fields, an analogous property would be of great
theoretical and practical interest. But one immediately
encounters the difficulty that for n — oo one deals
with continuous functions of an infinite number of
variables, and it is unclear how to define the integration
for the scalar product in this case. For a special class of
representations, the tensor- or direct-product repre-
sentations, one has succeeded in constructing such a
realization by continuous functions where the scalar
product is now given by a limit over ordinary finite-
dimensional integrations with the number of inte-
gration variables tending towards infinity.!* The
general case is still unsolved.

Realizations in spaces of continuous functions are
always possible; the main problem, however, is
whether one can obtain the scalar product in this
space by ordinary integration. It is easy to reduce this
question to a property of the kernel or of the vacuum
expectation value of the representation. The kernel has
to satisfy a certain integral formula; a kind of
generalized convolution of the kernel with itself has to
reproduce the kernel. Together with other basic
prerequisites, we explain this in more detail in Sec. 2.
We discuss in particular how the integral for finitely
many degrees of freedom can be carried over to fields.
There, three possibilities arise. One can introduce an
orthonormal basis in the space of test functions,
integrate over the first n degrees of freedom, and let n

8 H. Araki and E. J. Woods, J. Math. Phys. 4, 637 (1963).

®J. McKenna and J. R. Klauder, J. Math. Phys. 5, 878 (1964).

10 J. R. Klauder, in Brandeis Lectures 1967 (Gordon and Breach,
Science Publ.,, New York, to be published); J. R. Klauder, J.

McKenna, and D. G. Currie, J. Math. Phys. 6, 734 (1965).
11 J, R. Klauder and J. McKenna, J. Math. Phys. 6, 68 (1965).
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go towards infinity. One can, if this limit does not
exist, consider norms and take a limit superior. Or
one can consider the supremum over all bases, so that
the integral becomes basis-independent.

The question, if and where such kernel integral
formulas exist, is investigated in this paper. The proof
for the case of a finite number of degrees of freedom
makes use of the Schrodinger representation in an
essential way. Since for an infinite number of degrees
of freedom there is a host of inequivalent representa-
tions, a direct carrying over of the proof is impossible.

Besides irreducibility the Schrodinger representation
possesses a further property. The operators Q or Q,,
respectively, are cyclic, i.e., there exists a vector g,
in the Hilbert space J¢ such that the linear combina-
tions of vectors of the form QN ¢, lie dense in J. In
the usual realization of J as the space of square-
integrable functions and of Q as multiplication by x,
one can take for ¢, every function which differs from
zero almost everywhere. Conversely, every repre-
sentation with a cyclic Q is irreducible and hence
equivalent to the Schrodinger representation. In the
infinite case the analogous property does not hold.
There are irreducible representations for which the
field @ is not cyclic, and there are also representations
with the field @ cyclic which are not irreducible.”

If there exist any kernel integral formulas for fields,
one immediately encounters the interesting question of
which of the two properties is carried over—irreduci-
bility or field cyclicity. At first sight, the form of the
Schrodinger representation points to field cyclicity
because it closely resembles the general form of a
representation with cyclic field. In Paper I, therefore,
we investigate these representations with respect to
kernel integral formulas.

The general form! of these representations (cf.
Sec. 3), which also holds in the finite case, allows a
simultaneous investigation of finitely many and of
infinitely many degrees of freedom (fields) without
using the special nature of the Schrodinger repre-
sentation. In Sec. 4 we derive a general criterion for the
existence of kernel integral formulas in representa-
tions with cyclic field operator. After simple applica-
tions to tensor-product and partial tensor-product
representations, the criterion is sharpened considerably
in Sec. 6 such that only vacuum expectation values
enter. In Sec. 7 we finally show by a simple example
that not every representation with cyclic field can
satisfy a kernel integral formula. This will lead us in
Paper 11 to the investigation of irreducible representa-
tions.

12 The present paper seems to be the first somewhat more practical
application of this.



KERNEL INTEGRAL FORMULAS. I

2. PRELIMINARIES: KERNEL INTEGRAL
FORMULAS

In order to give the CCR in (1.1) a mathematically
precise meaning, one has, in view of the d function, to
consider the fields as operator-valued distributions.
One therefore replaces @(x), II(x) by @(f), Il(g),
where f and g lie in a subspace U of all real square-
integrable functions on R® and where ®(f), lI(g) can
be considered heuristically as *“smeared” field oper-
ators:

o(f) = f D) f(x) dx, TI(g) = J T(x)g(x) d°x.

(2.1)
By formal calculation one obtains
[D(f), (] = [1I(g), [1(g2)] = O,
[@(f), TL(g)] = i(f, ) 22)
where
(.9) = | fgeo) s
Because of Eq. (2.1), one demands
O(f + /o) = () + ©(f),
H(g1 + gz) = H(gl) + H(gz)- (2.3)

U is called the test function space. Because the oper-
ators in Eq. (2.2) are unbounded, one still has to
specify their domain of definition. In order to avoid
these complications, one replaces ®(f) and Il(g) by
the Weyl operators U(f) and ¥(g), whose connection
with the fields is formally given by

U(f) = ez‘d)(f)’
V(g) = M)
Formal application of Egs. (2.2) and (2.3) yields

U(DU(f) = U(/L + 1),
V(gl)V(gz) = V(g1 + gz),
V@U(f) = e "2 U(f)V(g).
The postulated unitarity of U(f) and V(g) implies
U) =r(0) =1,
u()* = u(-f),
Vif)* = v(=f).
Relations (2.5) and (2.6) are usually taken as a
starting point for rigorous mathematical investigations
of the CCR. It should be noted, however, that there
are more representations for the fields than for the
Weyl operators because the unitary operators in
(2.4) need not exist in a well-defined way; and even if
they exist, Eq. (2.5) need not hold. Conversely, one

can always obtain the field operators from U(f) and
V(g) by Stone’s theorem if one imposes appropriate

(2.4)

(2.5)

(2.6)
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continuity conditions. The preference for the Weyl
operators over the fields has to be justified by physical
arguments. In quantum mechanics the integrability
of the operators P and Q, i.e., the existence of the
unitary operators satisfying relations analogous to
Eqgs. (2.4) and (2.5), is closely related to Galilei
invariance.

As a further requirement for a representation of the
CCR, one assumes weak continuity for each degree of
freedom, or, more precisely, for each f and g in U
the operators U(Af) and V(Ag) are assumed to be
weakly continuous in A. Because of unitarity, this
implies strong continuity. In addition, one has by
Eq. (2.5) for fixed f;,***,f,and gy, -, g, that

U(? s ﬁ.) and v (i zigi)

are (weakly and strongly) continuous in 4;,. As an
abbreviation we put

Ut ) = U(f) V(o).

Definition 2.1: By a representation of the CCR with
test function space ‘U we mean a family of operators
U(f), V(g) with £, g € U, which fulfill Egs. (2.5) and
(2.6) and for which U(4f), V(2g) depend continuously
on A.

Q.7

The CCR are closely connected with a group G
whose elements are triplets g = («;f, g), where «
is a complex number of modulus 1 and where fand g
are in U. The group relation is

0102 = (ei(fz'gl)%“z;fl +fo, g+ 8 (28

Therefore every representation of the CCR is a unitary
representation of the group G where (a; 0, 0) is mapped
onto « - 1.

A representation of the CCR is called cyclic if there
exists a vector g, in JC such that the finite linear com-
binations of vectors of the form U(f, g)¢, are dense in
JC. Every unitary representation is a direct sum of
cyclic representations; for a nonseparable Hilbert
space J the sum may be uncountable. With every
cyclic representation and cyclic unit vector one can
associate the expectation value

E(f, &) = (g0, U], &)o)- 2.9)
This is a function on U x U, and, because in physical
applications one often assumes the vacuum to be
cyclic, E(f, g) will be called vacuum functional.
Let f;, g,€°U and let 4; be complex numbers,
i=1,---,n Then
2

0<

% AU(fis 8o
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implies, by Eq. (2.5),
> AdeITE(f, — f, g, — g,) 2 0. (2.10)
One further has

E(f, g) = E(—f, —g)e’"?. (2.11)

Araki’ has shown that every cyclic representation of
the CCR can be characterized by its vacuum func-
tional:

Theorem 2.1: The functional E(f, g) determines a
cyclic representation up to unitary equivalence. To
every functional on U x U which fulfills Egs. (2.10)
and (2.11) there exists a cyclic representation. For
the continuity of U(f) and ¥(g) in some topology of
U, it is necessary and sufficient that E(f, g) is con-
tinuous in f and g separately.

To prove the unitary equivalence of two repre-
sentations U(/, g), 0( £, ) with cyclic vectors ¢, ¢,
and with (o, U(f, 8)¢o) = (o, U(f, g)¢), one maps
the vectors Y A,U(f;, g)go onto > A,U(f;, g)de-
This mapping is isometric by the same reasoning which
led to Eq. (2.10). The proof that to every vacuum
functional there exists a representation was carried
out by Araki’ with the help of self-adjoint algebras.
However, if one starts from the group G in Eq. (2.8),
this part of the theorem is an immediate consequence
of a simple result about positive group functionals.!®
The construction outlined further below will also
imply this.

The kernel K(f, g; f’, g') of a cyclic representation
is connected in a simple manner with the vacuum
functional. Let ¢, be a cyclic unit vector, and put

|f, &) = U(f. &> (2.12)
K(f.g:f . eh=fglf g
= (U(f, )0 U(f", g)go). (2.13)
In the same way as Eqs. (2.10) and (2.11) one obtains

2 AAK(f5 855100 8) 2 0, (2.14)
K(f.g:f.8)=K('¢g';f 2, (2.15)
K(f, 8,8 =1, (2.16)

K(f, g:f,8)=€Y79K(0,0;f — f, ¢ — g),
(2.17)
K(0, 0; f, g) = E(f, g). (2.18)

13 M. A. Neumark, Normierte Algebren (VEB Deutsches Verlag
der Wissenschaften, Berlin, 1959), p. 401, Theorem 1.
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The linear combinations of the vectors |f, g) in
Eq. (2.12) are dense in JC because ¢, is cyclic by
assumption. Every ¢ € X is therefore uniquely deter-
mined by the function

o(f,.e)=(fgle

on U x U. It follows from the assumed continuity
properties of the representation that (37" 4;f;, g) is
continuous in A; for fixed f;, g, and similarly for
@(f, Y A.g,). If one imposes stronger continuity con-
ditions, ¢(f, g) becomes continuous in an analogous
way. According to (2.5), the operators U(f), V(g) act
on @(f, g) in the following way:

Wwiexf, o) = olf -1, 2,
VXS, g) = " o(f, g — g).

The totality of all such functions @(f, g) is a subspace
of the space of all continuous and, because of
I{f,g| @)l < ll@l, bounded functions on VU x .
Here, continuous is meant in the above sense. This
subspace is determined by the kernel, as is shown by
the following construction of a representation by
means of the kernel.’*

Let K(f, g; f', g)beafunctionon VU x U x U x
U satisfying Eqgs. (2.14)-(2.17). Let € be the set of all
functions on U X U of the form

(2.19)

(2.20)

<P(f,g)=$li1<(f,g;ﬁ,g,-), n=1,2,, 21

where the A; run through the complex numbers and

fi» g; through U. Let

¢'(f, 8) = ? MK(f, g5 11 » 8))-

One defines a positive-definite bilinear Hermitian
form (¢, ¢’) on £ by

M=

(g, 9) =

k3

. lezA';K(j;’ g fi> gD (222)
jo=

By Eq. (2.14) one has (¢, ¢) > 0; in particular,
(9, ) = Z’ zi}“jK(fi’ 8:fi: 8) = Z Ag(f;, 8-
' ' (2.23)

With ¢'(f,g) = K(f,g;f",g'), from (2.22), in a
similar way, one obtains

o(f,g)= (¢, ) =(K(f.g;: . 8) o(f, g), (2.24)

1 'N. Aronzajn, Trans. Am. Math. Soc. 68, 337 (1950); cf. also
Ref. 9.
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and from this, by Schwarz’s inequality and Eq. (2.23),
we get

lo(f', W L (@, ) (¢, @)
=(p, ) K(f,¢;f,8)=(p, ).
(2.25)

Therefore (¢, ) = 0implies.the identical vanishing of
@(f, g). Thus one has in £ a scalar product and a
norm ||¢|| = (@, ), with respect to which £ can be
completed to a Hilbert space. Let ¢,(f,g) be a
Cauchy sequenceint, |¢, — @,/ — 0, for n,m — .
With ¢ = ¢, — ¢,, Eq. (2.25) then implies

19.(f:8) — (/. D < llg, — @l

Thus the sequence of functions ¢, (f, g) converges
pointwise and uniformly to a function on U x U
which has the same continuity properties as the
kernel. The norm of the limit is as usual defined by
lim ||@,l. Thus the closure of £ with respect to the
norm in Eq. (2.23) consists of a Hilbert space of
continuous functions determined by the kernel.

Now one defines linear operators U(f’), V(g’) in
£ by Eq. (2.20). With Eq. (2.17) one shows at once that
£ is invariant under these operators. In the same way
one shows that the operators are unitary and satisfy
the CCR. Their uniquely determined extension to the
closure of £ therefore yields a representation of the
CCR. Choosing ¢,(f, g) = K(f, g: 0, 0), ¢, becomes
a cyclic vector; by (2.17) and (2.22), one obtains

W', 890, U, 890 = K(f', 8"5 ", 8").

For a given kernel one has thus constructed a repre-
sentation by means of continuous functions, and one
has simultaneously proved the second part of Theorem
2.1

The scalar product in Eq. (2.22) is not very con-
venient because one has to express the functions in
terms of the kernel. For infinitely many degrees of
freedom, Klauder and McKenna® have shown that the
scalar product can be obtained by integration if the
representation is equivalent to the Schrodinger repre-
sentation. Let U be finite dimensional, and let
hy, -+, h, be an orthonormal basis of U. For any
f, g€, one can write f = " ah;and g = 37 fh,.
With the operators Uj(e;) = U(a;hy) and V() =
V(B;h),j=1,"++,n, one obtains the usual notation
for a representation of the CCR with n degrees of
freedom if one puts

(2.26)

Uja) = €59, V(B = eils, (2.27)

Let d*f denote the Lebesgue measure defined by the
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scalar product in U. With the above basis one can
write d"f=dwx,---dx,. If the representation is
irreducible, one can realize the U; and V; by the
Schrodinger operators in the space L? of square-integ-
rable functions on R":

U )y)oxr, v s %) = €
VB Iv)xy, - -

ixjo;

w(x].’ Tt ,X,,),
’x'n) = w(xli.”’xj + ﬂj’“"xn)'
' (2.28)

By means of this realization Klauder and McKenna®
have shown that for any normed ¢, € L%, i.e., | @, =
1, one has for all y;, p, € X,

‘[da1~--dandﬂl---dﬁnﬂzwy’

X (1, 1:[ Ujey) 1:[ ViB)po

X (l:[ Uyey) 1:[ ViB®o, wo) = (91, o).
With (2.19) this can be rewritten as

(91, ¥2)
- fm”dnfdng/(zw)wl, UCE, 99U, 8) 7o, )

=L,X(Ud"f d"g/2m)"pu(f, (S, 8)- (2.29)

This can be viewed as a resolution of the unit operator:

1=ijvmthM@Mﬂ.

Conversely, the representation is equivalent to the
Schrodinger representation if (2.29) holds for all
¥, Y2 €. In Ref. 5 Eq. (2.29) was sharpened as
follows:

Lemma 2.1: In the Schrédinger representation for n
degrees of freedom, one has for all y,, ¢,, @,, Y, €H

f d7fd"g/2m)(yy, U(S, @) )(U(S, 8)@z, ¥a)
WUxV
= (Y1, Po)(P2, po). (2.30)

For an arbitrary representation one has

‘ fm‘ud"f d"g/Qm)™(y,, U(S, e )(U(f, )@a, v

< Nl - gl - Bl - el (2.31)

The last inequality implies that the functions @(f, g)
are square integrable over U x U. For fixed ', g’ €
U, K(f,g:f',g") is a particular ¢(f, g). Equation
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(2.29) then implies the integral formula

f 4" d"glQmyK(f's '3, KU 83 1" )
UxV
= K(fl’ g’;f”, g”).

Conversely, (2.29) follows from this for the ¢, used in
the definition of the kernel. Indeed, (2.32) is just
(229) with v, = |f",f") and y, = |f",g"). Then
(2.29) holds for all finite linear combinations of such
vectors. Since g, is assumed to be cyclic, (2.29) holds
on a dense set of vectors ¥, , ¥, . The continuity prop-
erties contained in Eq. (2.31) then yield Eq. (2.29) for
all y,, v, € J. As will be shown in Part II, this implies
the irreducibility of the representation and therefore
the validity of (2.29) for any ¢,. One can also show
directly® that a kernel satisfying (2.32) belongs to
the Schrodinger representation.

Klauder and McKenna have succeeded in general-
izing Eqgs. (2.29) and (2.32) to tensor-product repre-
sentations of the CCR for infinitely many degrees of
freedom. There exists an orthonormal basis 4, , A,, - - -
of U which enters in a natural way into the construc-
tion of tenmsor-product representations. Denote by
W, the subspace of U spanned by the first n basis
vectors. Then®1

(2.32)

arfdrgl2ay(y,, U(L, o

WaXWhy
x (U(f, 8)@o> ¥o) = (¥1, ¥ (2.33)

for all y, , ¥, € ¥ and any normed ¢, € . Thus in the
infinite case the integral over the parameter space U
has been replaced by a limit of integrals over finite-
dimensional subspaces. Analogously to (2.32), one
obtains for the kernel the integral formula

d"fd g|2m)"K(f', g'; £, &)

WaxWa

x K(f, 8;:f",8") = K(f', &'; ", &)-

The question arises whether similar formulas also
hold for other representations of the CCR. In the
general case the limit in (2.33) need not exist, or its
value might depend on the particular basis in U. For
¥, = v, the integrand in (2.33) is positive, and,
according to (2.31), the integrals have a common
bound so that at least the limit superior exists. Since
one can express scalar products by norms, it would
still be interesting if, instead of (2.33), one had

f dvf d gl2my" Ky, U(S, @)eol® = llvl?
WaXWo
(2.35)

for all y € X and some unit vector ¢,. Since this
integral depends on the particular basis 4;, k,, - -+,

lim
n—=w

lim
n— o

(2.34)

lim

n—=rw
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Klauder'® has proposed to consider the supremum of
the left-hand side of Eq. (2.35) over all bases. In this
way one would get a basis independent integral. Let
B be an index for the different bases hf, b, - - - of U,
and let W/ be the subspace spanned by A%, -, h.
Then the question is whether

d"f d"g/(2m)" Ky, U(f, &)pol*

= {yl* (2.36)

holds for all ¢ € J€ and some unit vector ¢, . Of course
this can hold only for a ¢, which is cyclic with respect
to U(f, g), because the left-hand side is zero for any
y orthogonal to the subspace of J€ generated by the
vectors U(f, g)@,. Again one can replace (2.35) and
(2.36) by expressions in which only the kernel enters.
But these are now somewhat more complicated than
(2.34) and not of interest here. Simpler expressions will
be given in Paper II.

In a certain way the integrals in Eqgs. (2.33)-(2.36)
can be considered as group integrals over the param-
eter space U x U of the group G in (2.8). The
resulting formulas will be called kernel integral
formulas. We now turn to representations with a cyclic
field, i.e., with U(f) cyclic, and investigate them with
respect to such formulas.

sup lim
g = W,.BX W,.ﬂ

3. CYLINDER SETS

Every representation of the CCR with cyclic field
can be realized by means of a measure u in the space
L2 of u-square-integrable functions. Here u is a
measure on the dual space U’ of all linear functionals
on V. For the following we need some properties of
the measure and of the realization.

The space U is a real linear vector space of finite or
infinite dimension. Let VU’ denote the totality of all
real-valued linear functionals on U, i.e., not only
those which are continuous in some topology of <U.
For instance, if U consists of all square-integrable
functions, the space of all continuous, i.e., bounded,
functionals would be equal to U, while V' is much
larger. However, if U is finite dimensional, U is
isomorphic to V",

Let W be a finite-dimensional subspace of U, and
let W° < U’ be the annihilator of Win V', i.e., W°
consists of all F e U’ with

(F,f)=0 forall feW. 3.1
Denote by % the natural homomorphism of ‘U’ onto
the factor space U’/ W?. The elements of U’/ W°are the
cosets F + WO:

n:F—F + WO (3.2)

15 J. R. Klauder, Ref. 10.
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Definition 3.1: Let A be a subset of U’/W?°. The set
Z = y7Y(A), the inverse image of A in V', is called a
cylinder set with base 4 and generating subspace W.

We show that the factor space U’/W° can be con-
sidered as the dual space W' of W. Then Wand U’/ W?°
possess in particular equal (finite) dimension. By Eq.
(3.1) all functionals which belong to the same coset
coincide on W so that such a coset defines a linear
functional on W. In this way one obtains every
element of W'. For let F, € W ,andlet f;, - -, fybe
some basis of W. This basis can be extended to a
Hamel basis of “U. Define a linear functional F on U
by (F,f) = (Fy,f) fori=1,---, N, and 0 for the
rest of the Hamel basis. Then F € U’ and F coincides
on W with Fy.

Since there is a scalar product (f, g) in U, every
element f of UV defines a linear functional F; on U by
the equation

(F,,g)=(f,g) forall gew.

In this way one obtains an embedding of U in V",
In the following we always identify F, with f'so that we
can consider U as a subspace of U’:

U< v

(3.3)

34

If W is a finite-dimensional subspace of U, one can
identify W with W’ by relation (3.3), so that, with the
preceding remark, one can write

W= W =/Wo. (3.5)

Since with W also “U’/W? is finite dimensional, one
can take Borel sets for the base A in definition (3.1),
which will always be done in the following. We now
turn to cylinder measures.

Definition 3.2: A normed cylinder measure is a real-
valued function u(Z) on the family {Z} of all cylinder
sets Z belonging to finite-dimensional generating
subspaces and Borel bases, with the following prop-
erties:

MoK u@)<L1forall Z;

@) p(V) =1;

(3) If Z = Uy Z, where all Z; possess the same
generating subspace and have pairwise-empty inter-
section, then

w(2) = imz,-).

The last condition does not mean that u is countably
additive on {Z} because, in general, the generating
subspace need not be the same. But one obviously has
the following consequence.
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Lemma 3.1: Every cylinder measure induces a
countably additive measure i on the Borel sets 4 of the
factor space ‘U’/W? by the definition

i4) = u(Z), (3.6)

where Z is a cylinder set with Borel base 4 and gener-
ating subspace W.

If in addition u is countably additive on {Z}, it can
be extended to a countably additive measure on the
o-algebra B generated by {Z}.}¢ The elements of B are
called the Borel sets of V',

The above results remain true if U is a topological
vector space, in particular, if ‘U is a nuclear space, like
the space S of Schwarz, and if U’ is the space of con-
tinuous functionals on V. Some derivations, however,
are different. Further details on cylinder sets and
cylinder measures can be found in Ref. 17.

There exists an important connection between
cylinder measures and representations of the CCR.
Let U(f, g), f, g € U, be a representation with cyclic
field operator, and let @, be a unit vector cyclic for
U(f). Then there exists’ a normed countably additive
measure u on B, the Borel sets of VU, such that U(f),
V(g) can be realized in the Hilbert space L2 of u-
square-integrable functions® ¢(F) on VU’ in the follow-
ing way. The cyclic vector ¢, corresponds to the
function ¢y(F) = 1, and

(U(f)(P)(F) — ei(F,f)(P(F),
(V(g)p)F) = a,(F)(F + g),

a,(F) = (V(g)@o)(F).

Due to the group property of the V(g), the functions
a,(F) fulfill the relation

aa(F)av’(F + g) = ag+g’(F)'
Due to the unitarity of the representation, one has

du(F + g) = |a,(F)” du(F). (3.9)

For u(A) =0, A € B, this implies u(A + g) = 0 for
all g € U. This means that u is quasi-invariant.

The 'space V" is rather large, and one would like to
replace it (through suitable continuity conditions) by
a smaller one. In general, this is not possible. However,
if U is a nuclear space (the space S say), and if the

3.7
with

(3.8)

1¢ P, R. Halmos, Measure Theory (D. van Nostrand, Inc., New
York, 1950), p. 54.

17 A. Kolmogorov, Grundbegriffe der Wahrscheinlichkeitsrechnung,
Ergebnisse der Mathematik (Springer-Verlag, Berlin, 1933), Vol. 2,
No. 3; I. M. Gel’fand and N. Y. Vilenkin, Generalized Functions
(Academic Press Inc., New York, 1964), Vol. 4.

8 The function @(F) is not to be confused with the “‘smeared”
field operator @©(f).
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representation U(f) is continuous in this topology,
one can confine oneself to the space of continuous
functionals.®

4. A GENERAL CRITERION FOR KERNEL
INTEGRAL FORMULAS

Let 4,, Ay, - -+ be an orthonormal system for U,
and let Wy be the subspace generated by the N first
vectors:

WN={h1""shN}'

Every f, g € Wy can be written in the form

4.1

N N
f=2“ihi, g=2ﬂihi5
and ' '
dfdVg =doy - - day dpy - - - dBy

is the usual Lebesgue measure in Wy x Wy deter-
mined by the scalar product in Wy.
Now we consider

I(@, 905 )

EfW w df dNg|2mN (g, U(f, &)@ U(S, 8)¢0, ¥,
o (4.2)

where | @] = 1. The representation U(f,g), if
restricted to f, g € Wy, becomes a representation for
N degrees of freedom. Thus Eq. (2.31) of Lemma 2.1
applies, and one has the absolute integrability of the
integrand in (4.2) as a consequence by Schwarz’s
inequality. According to Fubini’s theorem, the
double integral can be replaced by iterated integrals.
We are going to see under what condition the integral
approaches (g, ) for N — o or for a subsequence
N, Ny, oo

We assume that @, is cyclic for U(f). The general
case will be treated later. In the realization of the rep-
resentation given by Eq. (3.7), let ¢ and y correspond
to @(F) and w(F), while @y(F) = 1. One then has

(3, UV = [ duFIFEI ", (F)

and a similar expression for the second scalar product.
Equation (4.2) becomes

Iy =fWNXWNde ng/(2”)Nf‘wd,u(F)q'D(F)ei(F’f’a”(F)

x [ EIBENEYED. @)

The guiding principle for the further investigations
in this section comes from the following observation.

1* I. M. Gel'fand and N. Y. Vilenkin, Ref. 17, last chapter.
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The integral over dVf reminds one strongly of a ¢
function or Fourier transform. However, U’ is an
infinite-dimensional space with the measure u not
further specified. Therefore, one will have to try to
reduce the integral over U’ somehow to a finite-
dimensional Lebesgue integral. Of course, this will not
be possible without more ado, and we therefore
introduce some new notations and a few lemmas. Let

Xy = {U(N)ge; f€ Wy} = {77 fe Wy} (44)
be the closed subspace of ¥ generated by the vectors
U(f)po, f€ Wy. In the realization & = L2, Xy is
generated by the functions e'¥?, fe Wy. Let Py
be the projection operator onto JC, . Denote by U,
the set of all finite linear combinations of the #,:

QTOE{hl’h2,'”}= U Wy.
N

(4.5)

If U is finite dimensional, one has of course Uy = U,
and ¢, is also cyclic for U(“Uy), i.e., for U(f) with
S € V,. If in the infinite case U has a suitable topology
with respect to which U, is dense in U, and if U(f) is
continuous in this topology, then clearly ¢, is also
cyclic for U(V,). It seems doubtful, however, that one
can prove this for the general case. Therefore, when-
ever needed, we will have to make the additional
assumption that ¢, is also cyclic for U(U,). Later the
following simple properties will be needed.

Lemma 4.1: If ¢, is cyclic for U(V,), then Py
converges strongly to 1 for N — co.

Proof: For given p € one has to show that
lim |y — Pyw| = 0. For any € > O there are numbers
Ay, -+, 4, and elements f, - - -, f, of U, such that

ly — 2 AU(f)goll < €/2.

Every f; lies in a Wy, . Let Ny = max N,. Then one
has for N > N,

Iy — Pyyll < lly — 2 AU(f)el
+ 12 AU(f)go — Pyyll < e.

Lemma 4.2: Let W be a finite-dimensional sub-
space of U, and let & be the measure in U/W° induced
by u according to lemma 3.1. Let Z(F) be a measurable
function on U’ which is constant within each coset
F=F+4+ W Then one can consider Z(F) as a
measurable function?® on VU’/W?°, and one has

| rzer = abzm. 4o

20 One really should introduce another notation for this function,
Z(F) say, Z(F)= Z(F)for FEF.
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Proof: The statement immediately follows from the
definition of i in (3.6) and from the properties of the
integral.

Lemma 4.3: ¥y consists just of those functions
of L2 which are constant within each coset F + W} of

VWY,
Proof: Let Fy € WY, Then

GFHELD _ GitFL5)

for all fe Wy since (F,,[f) = 0. Hence for fe Wy,
exp [i(F, )] is constant within a coset F + W}, and
the same holds for finite linear combinations and
limits of these. Conversely, let Z(F) € L2 be a function
with Z(F 4+ W%) = Z(F). Putting F = F + W}, one
can consider Z(F) as a function on U’/ WY, which is
square integrable with respect to the measure iy
induced in V’/WY by u. Therefore Z(F) can be
approximated in L3 by linear combinations of
exp [i(F,f)], f€ Wy, because these functions are
dense in L2 [according to Eq. (3.5), every Fe U'|W},
can be considered as a linear functional on Wy]:

f ‘Z(F) _S il iR <o fieWy. @7)

By lemma 4.2 this shows that Z(F) can be approxi-
mated by linear combinations of functions of ¥y and
hence lies itself in JCy . Q.E.D.

Now we return to the evaluation of I, in (4.3) and
first take®! for ¢, y elements of 38y, M < N and M
fixed. As a reminder, we write @, ¥,,. We decom-
pose a,(F) into its two orthogonal components
a,(F)y and a,(F)yL in Xy and y1 = (1 — Py)ie,
respectively:

a,(F) = a,(F)y + a,(F)y. . (4.8)
Note that a,(F)eL} since a,(F)= (V(g)po)(F).
According to the last lemma and because of M < N,
one has
e (F) € Ky,
e ' FNy (F) e Ry (4.9)
Inserting (4.8) into (4.3), (4.9) and by the orthog-
onality of ¢, and Jy . one obtains

Iy = f df g2y
WxxXWnw
x fcu du(F)E P0G (Fay(F)

X [, A, e TP, (4.10)

21 This is a decisive point of this paper.
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The integrands depending on F and F’ are now con-
stant within each coset F = F + W}, . By lemma 4.2
one, therefore, gets

=[  ayavgem
WxxXWa
%[ A E g Fra Py
U/ wy°
%[ A Ee (), @)
VW y0
where j N is the measure in U’/WY, induced by p.

Lemma 4.4: The measure fi is quasi-invariant,

Proof: One has to show that jiy(4) = 0 implies
An(A + §) = 0 for every §eVU'/WY,, where 4 is a
nonempty subset of U'/WY. Let Z < U’ be the
cylinder set belonging to base 4 and generating
subspace W,. By (3.6) one has u(Z) = jiy(4) = 0.
According to Eqgs. (3.4) and (3.5), there lies an element
g € Wy in each coset § € U’/W5,. Choose this g as a
representative for §, £ = g + W} If # is the natural
homomorphism of VU’ onto U’/W?,, then

T A+H=Z+g+Wi=Z+ g

Therefore Z 4 g is a cylinder set with base 4 + # and
generating subspace Wy . The quasi-invariance of u
implies u(Z + g) = 0, and therefore

fivA+8)=uZ+g=0  QED.

Every normed quasi-invariant measure on the
Borel sets of a real N-dimensional vector space
(N < o0) is equivalent to the Lebesgue measure.??
Hence there exists a positive measurable function2?
pn(F) on U’/WY, such that

diin(F) = py(F) a"F, (4.12)

where d"F is given by the Lebesgue measure in
V’/W?, which is induced by the Lebesgue measure
in Wy through the identification of W), and U’'/W}
in Eq. (3.5).2* Since ¢ and jiy are normed, one has

f pn(F)dNF = 1. (4.13)
RV g

22 J. M. Gel’fand and N. Y. Vilenkin, Ref. 17, p. 352, Theorem 2.
23 1. M. Gel'fand and N. Y. Vilenkin, Ref. 17, p. 351, Theorem 1.
# For f€ Wy and g = 0, the vacuum functional is related to

py(f ) by a Fourier transformation. By Eq. (3.7) one has

E(f,0) = § exp {i(F, /)}pn(F)d¥F
forf (S WN .
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Equation (4.11) now becomes
= aasgen
WaxWa
X[ B Fra (P
Uywae

%[y L E o FIE pn(F)
” (4.14)

Formal integration over d"f|(2m)" gives SINF — F),
and subsequent integration over @V F” leads to

I ®ars 90> ¥ar)
- f dvg f o3P la,(B)l? §at Fypae(E).
W CU'/I‘VN“
(4.15)

We now justify Eq. (4.15) in a rigorous manner.

Lemma 4.5: Let @y, w37 € 8y with M < N. Then
I(®3r> o, ¥ar) is given by Eq. (4.15).

Proof: First let @57, 9y be such that

l‘PM(F )l {PN(F )}%
and |y (F)| {pn(F)}? are bounded:

laE)| {pn(P} < C, < 0,
(P {px(FPF < C, < . (4.16)

The set of these vectors for M = 1, --, Nis dense in
¥y since, according to (4.12), the mapping

o(F) & ¢'(F) = p(B)lpp(F)} (417

of L} (F Yonto L:(F) is isometricand since the bounded
functtons are dense in L2(F), where L*(F) denotes the
space of all Lebesgue-square-integrable (L?) functions
on VW/WY%. From a,(F)ye L3 (F) it follows that

(F)N{pN(F)}%eLz(F) Therefore, the integrands of
the two integrals over d¥F and d¥F” in Eq. (4.14) are
L? functions so that Parseval’s formula for Fourier
transforms of L? functions can be applied to the
integral over dVf](2m)". This immediately gives Eq.
(4.15) for functions of the form of Eq. (4.16).

In order to prove (4.15) for arbitrary elements of
3,5y, we use the linearity of I(p, @y, v} in @ and y.
Since one can decompose every function in real and
imaginary part and these in positive and negative part,
it suffices to prove (4.15) for nonnegative ¢ ,(F) and
vu(F).

Define ¢4, (F) and y},(F) as ¢'(F) in Eq. (4.17).
Since @Y, Yy € L2(F), it follows? that there exists an

28 p, R, Halmos, Ref. 15, Theorem B on p. 85 and Theorem D on
p. 110,
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increasing sequence of nonnegative bounded L? func-
tions @ (F), such that

lim pi(F) = ¢'y(F) (4.18)
almost everywhere and
lim f AV |@y(F)— U B = 0.  (4.19)

An analogous sequence v, exists for y},(F). Then ¢,,
Pus

ol B) = (Do DY, v (F) = v Do B,

(4.20)
are elements of Lf;N = Ry, for which Eq. (4.19) reads

lim gy — @I =0, limlyy — p,/*=0.

Equation (2.31) and the continuity properties of
In(®,, @0, ¥, ) resulting therefrom imply

tim (1im 1n(7,. 0. 92)) = In(@ar, 90, Yar). (42D

But ¢, and v, satisfy Eq. (4.15). Since the sequences
are increasing and since the functions are nonnegative,
one obtains?® for the left-hand side of Eq. (4.21)

lim (hm f g f ¥ Fp (Byp (B lay( Pyl pis (F))
= f dVg f ¥ Fprpy la,(Fyl oy, QE.D.

Before formulating the promised criterion, we prove
the following lemma:

Lemma 4.6: For all gy, 9y €Xy, M < N, one
has

f dVg f du(F) 1, (F)P? p(F) @ 3u(F)p32(F)
Wx ay

where py(F) is defined® by py(F) = py(F) for
FeF.

1}”2\{)7

Proof: By (3.9) one has du(F) - |a,(F)[* = du(F + g).
Changing the variable F into F — g, one obtains for
the left-hand side of Eq. (4.22)

|, [ duEonF = DulF = grpaF ~ .

28 P, R. Halmos, Ref. 25, Theorem B on p. 112.
27 Cf. the notational remark in footnote 20.
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The integrand is constant within each coset of  be arbitrary vectors in J. In view of the linearity of

U’/W?. Thus, by lemma 4.2 and Eq. (4.12), this
expression becomes

[ a%ef aFoxBonF -0
W VU /wx° -

X gul(F — DyulF — 8),
where § = g + WY . However, for g € Wy the map-
ping g — & is an isomorphism, by Eq. (3.5);.and,
according to the particular choice of the Lebesgue
measure, Vg = dVg holds. We can thus write

F — § = F — g inthe integrand, and another change
of the variable yields

f Vg f dulF) lay(EI py(F)F 22y ae(F)
Wy v

—{ avg f A PyprF + )se(FYp s F).
Wi U/ w0
(4.23)

Decomposing ¢ ,(F), ,,(F) into real and imaginary
part and then into negative and nonnegative part, one
can assume ¢, (F) and y,,(F) to be nonnegative.
Then the order of integration can be interchanged.
By Eq. (4.13) the integral over dVg is 1. Applying
lemma 4.2 to the remaining integral just yields
(Par> Y1) Q.E.D.

Now we are in a position to prove the criterion.

Theorem 4.1: Let ny < ny < -+ be a sequence of
natural numbers. Let A, A,, * -+ be a basis of U and
denote by U, = {h;, A, - - -} the set of all finite linear
combinations of the k; and, correspondingly, W, =
{hy, -+, h,}. Let U(f, g) with f, g € U be a represen-
tation of the CCR in which U(VUy) is cyclic, with cyclic
vector @, say, || @l = 1. Then

lim f dmf d™g/(2m)™
WaXWy,

x (@, U(f, @p{U(f, 8o, v) = (¢, v (4.24)

for all @, w € X if and only if for any @, , vy € Ky,
M=1  M< o0,

lim f d"‘gf du(F)
i~ W..'. RV
X pa(F)la (P — 1a,(F), "} @ayar = 0. (4.25)
Proof: Since one can assume n; > M, the necessity
of Eq. (4.25) follows immediately from lemmas 4.5
and 4.6 if one puts ¢ = ¢, and ¥ = y,,. Now as-
sume Eq. (4.25) to hold. Then (4.24) holds for ¢ =
P> ¥ = ¥y, by the same argument. Now let ¢ and

I,, one can take ¢ and w to be unit vectors. Let
€> 0, 1 > ¢ and arbitrary otherwise. Put ¢ = ¢/5.
Since ¢, is cyclic for U(Uy), there is an M, M < 0,
and vectors ¢,y , Yar € 3y such that @, lwal <1
and |l¢ — ¢yl <€, |y — vyl < €. Using the
linearity of I,, by the second part of lemma 2.1 one
obtains

(P, @05 ¥) — L®a15 o> Yar)l
= |L((p — $20) + @25 o> (¥ — ¥1) + Y20
— 1, (9a> Po> ¥ S € + € + €. (426)
Hence

lim |1,(®, %05 ¥) — (9, ¥)!
S iﬁlln,((Pa Pa» 'P) - In,-((PM9 Po> '/)M)I

+ l—la ”m((PM’ Po > wM) - (‘P, QP>|
<3¢ + Kou, v — {9, ¥

<3¢+ 2 = (4.27)

Thus the limit superior of the left-hand side is zero.
Since all numbers are positive, this implies that the
limit exists and is equal to zero. Q.E.D.
4

The condition in Eq. (4.25) of Theorem 4.1 means
that a,(F), has to tend in a particular way towards
a,(F) in order for the kernel integral to assume the
correct value. Recall that a,(F), is the projection
P (V(g) @y of V(g)p, onto K, . Since by lemma 4.1
P, converges strongly to 1, a,(F), converges to
a,(F) in norm. The only question is whether or not
this convergence is so rapid that the integral in Eq.
(4.25) goes to zero. We return to this question in
Sec. 7.

5. APPLICATION TO PARTIAL TENSOR-
PRODUCT REPRESENTATIONS AND
OTHER SPECIAL CASES

The preceding theorem holds independently of the
dimension of U. For finitely many degrees of freedom,
UV is finite dimensional, dim U = N say, and one has
V =V, =V’ and

ey = {UWype} = {UFV)py} = J
if g, is cyclic for U(V'). Therefore
a,(F)y = a,(F) (5.1

for all g € U. This Eq. (4.25) is trivially fulfilled, and
one obtains Eq. (2.29) for all cyclic ¢,. Since in the
Schrédinger representation U(VU) is cyclie, and since
the set of cyclic vectors is dense on the unit sphere,
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Eq. (2.29) follows for all unit vectors ¢, by continuity
reasons. In this way one has reproduced the kernel
integral for the Schrodinger representation. We point
out, however, that in the proof of Theorem 4.1 use has
been made of square integrability of @(f, g), so that for
a complete proof for the finite case this has to be
shown without Eq. (2.31). This is not difficult.

If U is infinite dimensional, Eq. (5.1) is not true in
general. There are, however, classes of representations
in which Eq. (3.1) is true either for all N or at least for
a sequence n; < ny < * -+ . It will be shown in Paper
I that these are just the partial tensor-product repre-
sentations. Here we briefly discuss these representa-
tions. For direct- or tensor-product representations a
kernel integral formula is known®!; in our discussion
this formula results from a simple specialization of
partial tensor-product representations and Theorem
4.1. In order to define these representations we have to
make a few remarks on incomplete tensor products of
Hilbert spaces introduced by von Neumann.®

Let J be an index set. Let z,, « €J, be complex
numbers. Then

11 z.

acJ

is called convergent® with value a if for any 4 > 0 there
exists a finite subset Jy(d) such that, for each finite set
J = (0, -, ) withJ, < J < J,

|z, * v 2,, —al < 6. (5.3)

The product in (5.2) is called quasiconvergent if the
product of the absolute values of the z, is convergent.
If it even converges in the above sense, its value is a;
if it does not converge, the value 0 is assigned to it.

Now let J€,, « €J, be a set of Hilbert spaces. A
sequence of vectors ¢, , ¢, € X, ,is called a C sequence
if the product of the | ¢,|| converges. If y, is another
C sequence, then [ J,es (9., %,) is quasiconvergent.?®

The complete direct or tensor product ®,c; ¥, now
consists of the closure of the linear hull of the “product
vectors” ® ¢,, where g, belongs to a C sequence.
The scalar product is defined in the sense of quasi-
convergence by

(® Pu» @ o) = gm, Ya)-

Here a product vector ® ¢, is nothing but a function
on J which associates every a€J with a vector
@, € J¢,. Thereby the complete direct product is inde-
pendent of any ordering of J, i.e., it is commutative.

Let a sequence of unit vectors ¢ € J€, be given. The
incomplete direct or tensor product (ITP)
k' = ® K,

acJ

28 J, yvon Neumann, Comp. Math. 6, 1 (1938).

(5.2)

(5.4)
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of the J¢, with respect to the reference vector ¢° = @ ¢,
is now defined as the closed linear subspace of the
complete tensor product which is generated by all
vectors of the form

¢ = ® ¢, with @, = ¢Jexcept for finitely many a.
(5.5)
By definition the ITP is commutative.

Two product vectors @ ¢, , @y, with0 < JT ./l <
o0 and. 0 < JT |yl < o are called equivalent if

EEJK%, Y,) — 1] < oo, (5.6)

where only countably many nonvanishing terms are
allowed in the sum. One can show the following?:
If ® ¢ is reference vector of an ITP, and if ® vy, is
equivalent to @ ¢2, then, % y, lies in the ITP deter-
mined by ® ¢?. Thus equivalent reference vectors
define the same ITP. Different ITP are pairwise
orthogonal.?®

Partial tensor products are a simple generalization
of ITP. Decompose the index set J into finite subsets
Jp:

J=U/J,.
r
For every r form the usual finite tensor product

() = ® K,;

a€Jy

(5.7

choose some unit vector %? from each J(r), and form
the ITP of the J(r) with respect to y?:

¥ = ® © 5. (5.8)
The resulting Hilbert space J€ is called a partial tensor
product (PTP). Tt differs from an ITP in the reference
vector because it need not be a product vector with
respect to the original X, .

Now the corresponding representations of the CCR
will be defined. Let A, &,, - - - be a basis of the test
function space U, and let every element of U be a
finite linear combination of the A,, i.e., U = U,.
Let J be the set of natural numbers. Let all J¢, be
isomorphic to L*(R'), the space of square-integrable
functions of one variable; let in each J¢, a Schrédinger
representation of [@, P] = i be given, and denote the
corresponding Weyl operators by U.(p), Vi) [cf.
Eq. (2.27)]. One defines unitary operators U,(p),
V. (p) in ® ¥, by

Up) = U p) ® (@1,,),

aFER

Vi) = 7(@) ® (g)nl,). (5.9)
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Now let f, g eV,

N M
f= Eljpnh,., g= 1Zq,.h,.-
We define

N M
u(f) = Il-[ Uup,), V(g) = III Vi(g,)- (5.10)

This is obviously a representation of the CCR.
However, it is reducible in &® J,. For let X, be the
ITP defined by Eqgs. (5.4) and (5.5). Every U(f), V(g)
changes only a finite number of factors in a product
vector, so that by Eq. (5.5) ¥,, is invariant. The
irreducibility of the Schrédinger representation implies
that X, is irreducible under U(f, g).* If every ¢ is
cyclic for U,(p), then obviously ® ¢ is cyclic for
U(f). The representation defined by Eq. (5.10) in an
ITP 1, is called a direct or tensor-product representa-
tion (TPR) with respect to the basis h; of “U.

In the same way one can define a partial tensor-
product representation (PTPR) with respect to a basis
h; of U. Decompose the set J of natural numbers into
finite subset J,,r = 1,2, -+, and forma PTP X, as
in Eq. (5.8). Let »(r) be the number of elements of J,..
In each J¢(r) define a Schrédinger representation for
»(r) degrees of freedom analogously to Eq. (5.9): i.e.,
if neJ,, take

0.0 = U © ( ® 1,) (5.11)
aENR
as operators in J(r); similarly for Vn(q). In ® ¥(r)
one defines operators U, (p),

U0 = U,(p) ® ( ol)

r#Er

(5.12)

and similarly V,(¢). Then U(f) and V(g) are defined
as in Eq. (5.10). Again U(f, g) is irreducible in 3.
By a renumbering of the basis vectors #; and of the
index set J, one can transform the subsets J, into
intervals:

J1=(1:“.’nl)’ J2=(nl+17“"n2)7”'-

(5.13)
In the following we will always assume this kind of

ordering.
If each ¢?in the reference vector & 49 is cyclic for

ﬁr(l’l, te aPn,) = Un,_l+1(]71) Tt Un,(Pn,),
then obviously ® 2is cyclic for U(f). We now show
that one can always assume & y? to be cyclic.

Lemma 5.1: Let U(f,g) be a TPR or PTPR in
R, = ® ®»"X(r). Then in each J&(r) there exists a

29 This follows from Ref. 28, Theorem IX.
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unit vector 2 such that ¢ o, = ¥, and such that §° =
& 9Lis cyclic for U(f).

Proof: A TPR is a special case of a PTPR, so we
treat only the latter. In each JE(r) the vectors cyclic
with respect to U,(p,, " -, p,) are dense on the unit
sphere. From these one can choose a ¥ in such a way
that [|§0 — 92| < 27". Then

Kig, v — 1 = g — o), p)l < 277
and

S, pD — 1] < co.

Thus ® 9 is equivalent to ® ¢?, hence @ ek,
and thus 3, = X ;. The reference vector @ 9 is
cyclic for U(f). Q.E.D.

Now the application of the criterion of the pre-
ceding section is straightforward. Let

W,=1{h, - ,h} and X, = {UW, )y,

where the reference vector ¥° = ® ¢! is taken to be
cyclic. Then it follows immediately from the definition
of a PTPR in Egs. (5.12), (5.13), and (5.10) that

y(w < ¥, , (5.19)
hence
a,(F),, = a,(F) for geW,, i=12,--,
(5.15)
where the n; are given by Eq. (5.13). For a TPR one
has in particular n; = i, since in this case the J; con-

sist of only one point. Theorem 4.1 thus implies the
following corollary:

Corollary 5.1: Let U(f, g) be a PTPR as defined in
Egs. (5.12), (5.13), and (5.10) with respect to the basis
hy, by, -+ of U. Choose the reference vector ¢® =
® ¢? to be cyclic. Then

drif d™gl(2m)", U(f, g)pe

Wn‘.XWn'.
X <U(f, 8)%, I‘/)> = (‘P’ ¢> (5'16)

for all ¢, y€S. The n, are given by Eq. (5.13). In
case of a TPT, one has n, = i.

lim

i~

In Paper II it will turn out that one can take any
unit vector for ¢, in Eq. (5.16). For TPR, Eq. (5.16)
has been shown by Klauder and McKenna,!! and a
complete classification of TPR up to unitary equiv-
alence has been given in Ref. 5. We note that for
TPR the above result obviously holds independently
of the ordering of the basis #,, h,, - of U. For
PTPR this need not be true.
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6. SHARPENING OF THE CRITERION

In this section the criterion of Theorem 4.1 will be
sharpened considerably. It will turn out that Eq.
(4.25) need hold only for ¢, (F) = w3 (F) = @o(F) =
1. This in turn just means that the integrals over
|E(f, &) tend to 1, where E(f, g) = {(@o, U(f, £)po)
is the vacuum functional belonging to ¢, . The criterion
is then carried over to the basis-independent kernel
integral of Eq. (2.36). Again it turns out to be sufficient
to consider only the vacuum functional. The im-
portant point for both the limit superior and the
supremum over all bases is that one can replace these
by a limit over a subsequence which is independent of
@ and .

Using the same notation as in Sec. 4, we first prove
a theorem for the kernel integral as a limit superior
and get, as a consequence of the proof, a corollary
for the kernel integral as an ordinary limit.

Theorem 6.1: Let hy, hy, - -+ be a basis of U, and
let U(f, g) be a representation of the CCR with cyclic
U(“Uy). Let the unit vector ¢, be cyclic for U(U,).
Then the following statements are equivalent:

(a) l_l:aln((pﬂa Do ‘Po) = 1;
(b) lim L(g, @5, ¢) = gl forall ¢ e Je;

(c) There exists a subsequence ny < n, < - - - such
that for all ¢, p € X,
lim I, (¢, @, ¥) = (g, ¥);
(d) There exists a subsequence n; < ny < -+ such
that

limf d""gf du(F)
i JWa, ay
X pu(F)la,(F)I* — la,(F), |} = 0.

Proof: We show (a) — (d) — (c) > (b) — (a).

(a) — (d): There exists a subsequence n; < ny < - - -
such that I, (¢,, @0, @o) converges to the limit superior.
By lemmas 4.5 and 4.6, with ¢, and y,, replaced
by @, this is just (d).

(d) — (c): First we show that condition (4.25) is
fulfilled for bounded functions. Let M < n and let
@:(F), p3,(F) be bounded functions lying in J€,, . By
lemma 4.2 and Eq. (4.23) one has

Koz as| auBpulla e
~ 18D} PP
= [, @l A PHpAF + )

— PP a(F), 230 Frypu(F).  (6.1)
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Now we show that* for ge W,

PulF + 8) = pulF) la,(F),I? (6.2)

almost everywhere on U’/W?. Indeed, let A be a
cylinder set with arbitrary base A = V'/W?. Let
%a(F) be the characteristic function. Then the first
term in the decomposition

2a(F)ay(F) = ya(F)a,(F), + ya(F)a,(F),.

lies in J, since y, €JC,, while the second lies in
¥, since for all ¢, €J, one has (¢,, x,0,,1) =
(PuXas> gu1) = 0. Hence P,(yaa,) = xa4,,, and
1P2(2a8,)| £ [l 2a4,]l just means

[ BraBur <[ aup e, etnm

[ e PF+ ®)
= fzdm(F) NN

Since A is arbitrary, this implies Eq. (6.2).

Returning to Eq. (6.1), we take the absolute value
of both sides. Let |@y(F)l, |y(F)| < C. Then Eq.
(6.2) yields

ki< [ e anh)
X {Pn(i + g) - pn(F) laﬂ(ﬁ)nlz}' (6'3)

Using again Eq. (4.23), the right-hand side just
becomes the expression of condition (d) if one puts
n =n,. Hence K, tends to zero for i — co. Then
lemmas 4.5 and 4.6 immediately imply (c) for bounded
functions of Xy, M =1,2,---.

These functions are dense in each J,, and hence
dense in X. Let @, p be arbitrary vectors of JC. One can
assume [¢| = ||yl = 1. Let 1 > € > 0. There exist
an M and bounded functions @u(F), v (F)€e¥,,
such that gy, llyul <1 and jlo — @yl < €/5,
v — wal < €/5. Then, as in Eqgs. (4.26) and (4.27),
it follows that

lim |1, (9, @0, ¥) — (7, ¥)| < .

(c) — (b) — (a): The first implication follows from
[L.(®, @, )| < | @l%, and the second is trivial.
Q.E.D.

The above theorem is relatively strong. For not only
does lim L(@o, P05 @o) = 1 1mply

1im (9, 90, ¢) = |l plI?

3¢ This will turn out to be a decisive point for this section because
it means that the term in curly brackets on the right-hand side of
Eq. (6.1) remains unaffected when taking absolute values.
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for all ¢ €, but also the surprising fact follows
that there exists a subsequence n,, the same for all
vectors, such that the limit superior can be replaced by
a limit. Normally, one would have expected this
subsequence to depend on ¢. In Paper II the class of
all representations satisfying the above conditions
will be determined.

For the case of a simple limit, the proof of Theorem
6.1 immediately implies the following:

Corollary 6.1: Let the assumptions be as in Theorem
6.1, and let n, < n, < - be a sequence of natural
numbers. Then the following statements are equiv-
alent:

(a)
(b)

lim I, (@q, ®os @o) = 1;

i—w

lim I, (g, o, ¥) = (¢, y), forall ¢, yeX;

ag[_ dute)
Wa, o
X Pn,(F){lav(F)lz - |aa(F)n.~l2} = 0.

Now we turn to the case sup lim, where the su-
premum is taken with respect to all bases of U. We
will find the same phenomenon as in Theorem 6.1.
Firstly, it suffices that Eq. (2.36) holds for ¢,; secondly,
there exists a fixed sequence of bases such that for all
@ € ¥ the supremum can be replaced by an ordinary
limit. This will be proved in the next theorem. In
Theorem 6.3 it will be shown that one can even replace

(¢) lim

i*wo

supﬁa by an ordinary limit over a kind of diagonal
B n
sequence,

products.

If k8, S, -+ - is a basis of VU, W’ is defined as in
Eq. (2.36) by W8 = (i, - -, hf}. Define p?(F), %*,
a,(F)?, I*(p, @y, ) by means of W/ in the same way
as Pn>s Je'n’ aa(F)na In((p’ o> I‘/)) iIl Sec. 4

which allows the transition to scalar

Theorem 6.2: Let U(f, g) be a representation of the
CCR, and let the unit vector ¢, be cyclic for U(f) in
such a way that, for any dense linear subspace U, of
U, @, is already cyclic for U(U,). Then the following
statements are equivalent:

(a) suplim I2(90, 9o, ¢0) = 13

n

(b) sup lim I%(¢, @, @) = ll@|%, forall gelk;
B n

(c) There exists a sequence of bases (h{", hy", - - ),
y=1,2,---,such that for all p €€

lim im I9(@, @0, @) = ol

) inf @f ﬂd"gf du(F)
B n Wy U
x ph(F){la,(F)* — la,(F);I*} = 0.
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The proof will yield the following:

Corollary 6.2: Let (B, B, --), v =1,2,- -, be
a sequence of bases of U and let the unit vector ¢, be
cyclic for every U(UY"), where U{” consists of all
finite linear combinations of A{", A", - - - . Then the
following statements are equivalent:

(a) lim ml(nv}(% s Qo> Po) = 1;

(b) lim lim I'(g, @y, v) = |@]? forall pele;

(©) lim@f md"gf du(F)
Wa -

X p (F){la(F)* — |a,(F),""} = 0.

First we show the following simple lemma:

Lemma 6.1: Let @(F)e L2 =3 with |p(F)| <
¢ < . Then for any € > 0, any § and any # > 0,
there exist an M and a @ (F)€ X4, such that
lou(F) < ¢+ nand g — oyl <e

Proof: For each f one has ¢ = {U J¢#}, by assump-

tion of the above theorem. Choose ¢ > 0 such that
€ + €% n = €& Then for each § there exist an M
and a @u(F)edh, such that (@, — ¢ <.
Schwarz’s inequality and the finiteness of u imply

&> {fdu |Pau(F) — ¢(F)l2} : Udﬂ : 1}

> [ 1) - qo(F)|}2

> { f e (|6 (P — |¢(F)||} 6.4)

Let A = {FeV": |gy(F) > ¢+ n} and let W¥ be
the annihilator of W%, in U". Since §,,(F) is constant
within each coset F + WJ‘{}’ , the characteristic function
xa(F) lies in &4, . Equation (6.4) implies

0> f | §3:F) — 9P} = 7 f du = nu(d). (6.5)
A A

Put @3 (F) = §4/(F)* (1 — xa(F)). Then ¢, (F) e ¥4, ,
|9 (F)| < ¢+ n, and :

loar — ol =f dit |Gag — ol +f du |g?
VUr—-A A

<€+t pd)

< € + c%efn = . Q.E.D. (6.6)
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Proof of Theorem 6.2: We show (a) > (d) — (c)
(b) — (a).

(a) <> (d): According to lemmas 4.5 and 4.6, (d) is
just another form of (a).

(d) — (c): There is a sequence of bases (A", A", < - +),
v=1,2,---, such that the supremum in (a) can be
replaced by a limit:

()

Conversely, (2) implies (a) by Eq. (2.31). An equiv-
alent form of (a') is

X pO(Fla,(F) — la,(F)y'I*} = 0.
We now show that (a) and (d’) imply (c). First let
@(F) e L2 £ ¥ be bounded, |¢(F)f < ¢, say. One can

assume [@ = 1. Let 1 > ¢ > 0. We have to show
that there is a vy = »,(¢) such that for v > »,

0<1~1limIY(g, gy, 9) < e

limli_n_ll‘n“’(tpo, ®o> Po) = L.

(6.7)

For each » there is, by the above lemma, an M =
M(v) and a ¢N(F)e Xy} such that | (F)| < 2¢,
le$l <1, and |l — ¢4l < /4. Due to linearity
and Eq. (2.31), one obtains, in a similar way as Eq.
(4.26), that -

(@, 90> @) — 15095, @or #3D| < B (6.8)
for all B, n. This implies
lim (g, 9o, @) — lim I5(¢'57, @0, ') | < fe.
(6.9
Define ¢, by
lim I(ge, 90, p) =1 —¢,.  (6.10)

Then €, > 0 and lim €, = 0. Hence there is a #, such

that 0 < ¢, < e/162'2 for all v > #,. Choose v, = 7,.
One has

0< 1 —1mIY(ep, ¢, )

=1 —mli,"’(tp(ﬁ’}, Po> <P(1Y4)
n

+ mﬁI(nv}((p(j;’ Po > ‘P(J‘lg - li—mliz")(‘p’ Do ‘P)

< e+ 1 —TmI@S, vor 95D. (6.11)
n

By the same argument as in Egs. (4.1)-(4.3), one
obtains forn > M

1 =19, g0, 951
e e[ dup®ia PP~ la P
Wn\l Cl)'

= 41 — Iy, ®o, o) (6.12)
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Hence the right-hand side of Eq. (6.11) is smaller than
fe + dc%v < $e + te = € for v > v,. This proves
Eq. (6.7), and thus (c), for bounded functions. Since
these are dense in L2 = X, the validity of (c) for all
elements of JC follows by the same argument as 'in
Eqs. (4.26) and (4.27).

(¢) — (b) — (a): The first implication follows from
Eq. (2.31), and the second is trivial. Q.E.D.

In condition (c) of the above theorem the supremum
is replaced by a limit, but there still appears the limit
superior. The natural question is whether this can also
be replaced by a limit over a subsequence which is
independent of ¢. For ¢, there exists, of course, such
a subsequence. It is, however, uncertain if there exists
a limit with this subsequence for I”(¢5}, @,, ¢{)) in
Eq. (6.12). If one could prove the existence of this
limit, everything would go through as before. Equa-

tion (6.12) only shows that, instead of lim, one may

n
take any other limit point. This means that one just
has to go sufficiently far in the sequence and that the

actual limit point, ie., lim or another one, does not

n
matter because their difference is restricted anyway.
This remark makes it seem likely that one can find a

kind of diagonal sequence such that lim lim, which is

a sort of double limit, can be replaced by Zm ordinary
single limit. This is indeed the case.

Theorem 6.3: Let the assumptions be as in Theorem
6.2, and let

supl_ir—ﬁlﬁ(tpo, ®o> o) = 1. (6.13)
B n

Or, somewhat weaker, let the assumptions be as in
Corollary 6.2, and let® _

lim Iim I(g,, @0, o) = 1. (6.14)
Then there exists for each v an index » = n(») such
that for all ¢, y € X

lim I (9, @, ) = (@, ¥). (6.15)

v

Proof: The above cyclicity assumption implies that
¥ is separable.®? Let ¢, @., "+ be a denumerable
dense set in ¥, and let P” be the projection operator
onto J!". For each », P converges strongly to 1 for
n— oo by lemma 4.1. Hence for each » there is an
index m(») such that [P, @, — @, < »™! for i=
1,-<-,» Let ¢ be any vector in J, and let € > 0.
There exists an index i, such that |l@, — @] < €/3,

31 Obviously Eq. (6.13) implies Eq. (6.14).
32 This simple fact is easily shown directly. It also follows from a
lemma in Paper II, Sec. 5 (J. Math. Phys., to be published).
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and for v > i;, €/3 one has

1P — ol < PSP — @)l
+ 1PSy @i, — @il + oy, — @l < €. (6.16)

Hence P{*), — 1 strongly for » — co.
Let €, be defined by Eq. (6.10), and for each »

choose an index n(») such that n(v) > m(») and

1 - I;v(i:)(%, @o> Po) < 2€,.

Now let @(F), p(F) be any two bounded functions in
L, |p(F)| L ¢, and |p(F)] < ¢ < oo say, and let
e > 0. We can assume || ¢|| = |[¢|| = 1. Put € = €/10.
Then there is a », such that for » > », one has
0<e < €28 |lg — Py(rr()v)” < €[2, and

ly — Pyl < €2

By the same argument as in the proof of lemma 6.1,
it follows that for each v > v, there is a function
Pl €Ki,y such that [, (F)] < 2¢, gl < 1,

m(v)
and |l¢ — ¢, < €. The same holds for ». Then
for v > v,

TS0, (@s 0> ¥) — (@, 9
LN, @0, ¥) — IS0 @ty s Pos Yot
+ U050 > @0 otn) — (@t > it
+ (@t i) — (@5 P)I- (6.17)

The first term on the right-hand side is not greater than
3¢’ by Eq. (4.26), and the third not greater than 2¢’.
For the second term, similar to Egs. (6.12) and
(6.1)-(6.3), one has

) (v) (v) (v) (v)
”i:zv)((Pw‘;(v)a Do %X(v)) - <(p7:(v)’ iprr‘;(v))l

f d"gf du
IVn(vb(v) ‘1)"

X PENIa,(B) = 1a, (B Y@ it

<41 = LY(@os 9o, @o)) < 8c%,. (6.18)

Hence the left-hand side of Eq. (6.17) is smaller than
e for v > v,. Q.E.D.

Up to now ¢, has always been assumed to be cyclic.
In Paper II it will be shown that under certain not very
strong conditions the validity of Eqs. (2.33), (2.35), or
(2.36) for some ¢, implies the validity for any other
unit vector. It will also turn out that in this case Eq.
(2.30) of lemma 2.1 can be generalized to infinitely
many degrees of freedom, the corresponding limit
being (y1, P2)(@s, ¢1)-

One can also apply the methods of Sec. 4 to these
questions, but the treatment in Paper II seems to be
simpler.
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7. DISCUSSION AND A COUNTEREXAMPLE

The integral conditions (4.25) of Theorem 4.1, (d)
of Theorem 6.1, (d) of Theorem 6.2, and (c) of
corollary 6.2 specify the kind of convergence of the
projections a,(F), towards a,(F). Of course, one now
can formulate numerous sufficient conditions which
imply this kind of convergence. The particularly
simple condition a,(F), = a,(F) has been used in
Sec. 5 for PTPR.

One immediately gets the natural idea that stronger
continuity properties of the representation might lead
to the required kind of convergence. For instance, one
could choose the space S of Schwarz for U and demand
continuity of the representation with respect to the
usual topology of S. Since S is a nuclear space in this
topology, VU’ can be replaced'® by the considerably
smaller space S’. Thus one might try to exploit the
far-reaching results of the theory of nuclear spaces
and of rigged Hilbert spaces.'®

In general, however, this hope is unfounded. Below,
a relatively simple example of 4 representation will be
given in which U(f) is cyclic and for which a kernel
integral formula holds neither with a limit superior
nor with a supremum over all bases, although the
representation is continuous in the topology of S.
The existence of such a representation can be deduced
from general reasons. In Part II we are going to show
that every representation fulfilling a kernel integral
formula has to be irreducible. And since there are
representations with U = § which are cyclic with re-
spect to U(f) and continuous in the topology of S
but not irreducible, a kernel integral formula cannot
hold for such representations. Since the example is
quite instructive and does not make use of the general
theory, it may be worthwhile to show this fact directly.

Consider®® the direct sum of two representations
which are given by the vacuum functionals

E(f. g = e‘i'{""f‘frf>+mf‘(g,gn—z'/z(f,g)
3 3 s
ml > m2 > 0, (7.1)

in Hilbert spaces J, and J,. In X = X, ® X, we
choose as ‘‘vacuum state’

i=12

|0 = 27}{]0); ® [0),}, (7.2)

where |0);, [0), are the vacuum states for E,, E,. The
representations determined by E; and E, are inequiv-
alent and irreducible, and |0); is cyclic with respect to
the field. They are tensor-product representations.®1!
If one takes S as test-function space, the representa-
tions are continuous in the topology of § x S.

38 This example was suggested to the author by J. R. Klauder.
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Denote by U,(f, g) the operators in J€;. Then in
X, U(f, g) = Ui(f, g) ® Uy(f, g), and with |0) one
obtains as vacuum functional

E(f,e) = HE(/, &) + E(f, &)} (7.3)

Before proving that |0) is cyclic for U(f), we show that
E fulfills neither condition (a) of Theorem 6.1 nor the
corresponding condition (a) of Theorem 6.2. For any
basis #,, hs, - - - of S, one has

f d"f dngl2m)" |E(S, g)f
WaXW

- f d7f d"g)Qm)" (3 E? + FE + 3 |EEs]).
WaXWq

(7.4)
By means of the well-known formula

Q)2 f exp {—a/2x*} d"x = a=* (a > 0),

one obtains for the first integral 4 and for the second
{3 + ¥(my/my + myfm)}~™/2, which tends to zero for
n— oo and m; # m,. Hence for any basis of S the
left-hand side of Eq. (7.4) tends to % for n — oo.

It remains to show that |0) is cyclic for U(f). This
is achieved by means of the cluster decomposition
property®* of the representations E;. If one defines
Jfo(x) = f(x — a) and the translation operators T;(a)
by T{a)lf, g);: =|f.» g):» then, according to this
property, T;(a) converges weakly to the projection
operator |0), ,(0| for |a| — co. Now assume that |0) is
not cyclic for U(f). Then there is a |p) = |p), @ |p), €
J€ such that |p) # 0 and (p| U(f) [0) = O for all f.

3¢ The physical idea underlying the cluster decomposition property
has been discussed by F. Coester and R. Haag, Phys. Rev. 117, 1137
(1960).
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Thus (y |f+ y,) =0 for any function ye S and
any a, hence also for |a| — cc. Evaluating this and
using the definition of E;, one obtains

e_ml(y,.y)/41<w |f>1 + e—mz(v.w)/«lz(w |f>2 =0. (7.5

Dividing by exp {—ma(y, y)/4} and letting (y, y) tend
towards oo, it follows from m; > m, that ,(y | f), = 0.
Hence also the remaining term in Eq. (7.5) has to
vanish, i.e., ,(p | f); = 0. Because of the cyclicity of
|0, with respect to U,(f), this implies |y); = [y), = 0,
thus |p) = 0, in contradiction to the assumption.

The above example provides a representation which
is cyclic with respect to U(f) but not irreducible. For
finitely many degrees of freedom this cannot happen,
and our proof would break down due to the missing
cluster decomposition property. For m; = m, the
integral in Eq. (7.4) assumes the correct value 1, but
|0) is not cyclic in this case. For other vectors the
kernel integral need not tend to the required value.
Thus the cyclicity assumption in Theorems 6.1 and 6.2
is quite important. In Paper II it will be shown that
this assumption can be replaced by an irreducibility

condition.
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In this paper we write down and solve Maxwell’s equations without sources when the field variables
are considered as functions over the group SU,. A Hilbert space is then constructed out of the field
functions. An expansion of the field functions in terms of the matrix elements of the irreducible repre-
sentation of SU, is shown to reduce the problem of solving Maxwell’s equations to that of solving one
partial differential equation with two variables. A Fourier transform reduces this equation into an
ordinary differential equation which is identical to the partial-wave equation obtained from the Schr-
dinger equation with zero potential. The analogy between the mathematical method used in this paper in
relation to the group SU, and the Fourier transform in relation to the additive group of real numbers is

pointed out.

1. INTRODUCTION

In this paper we write down and solve Maxwell’s
equations without sources when the field variables are
considered as functions over the rotation group O,
or its covering group SU,. This means the inde-
pendent variables of the field functions will be the
elements g € O3 or u € SU, . The variable u € SU, will
not, however, take over the whole set of the four
coordinates ¢, x, but only two of them. Clearly the
time ¢ and the radial distance r = |x| are unchanged
under rotations. Accordingly, the independent param-
eters of the field functions will be taken as ¢, r, and g,
or equivalently ¢, r, and u. The variable u € SU, will
replace the usual spherical angles 6 and ¢. An addi-
tional degree of freedom is so added since u € SU,
depends on three variables (such as Euler’s angles).
The physical field functions can be obtained by setting
the additional variable equal to zero.

By working with functions defined over the group
SU,, we will be able to apply some powerful mathe-
matical methods known from the theory of representa-
tions of compact topological groups.

An easy method’? to describe a definite quantity
as a function of u € SU, was given recently and a brief
summary is given in Sec. 2 below for the vector fields
case. In Sec. 3 we apply the method to Maxwell
equations. In Sec. 4 we discuss the properties of the
field functions written over the group SU,. A Hilbert
space is constructed out of these functions and,
accordingly, any solution of Maxwell’s equations
can then be considered as a vector in that Hilbert
space. Section 5 is devoted to the solution of Maxwell’s
equations. This problem is reduced to the solution of

1 M. Carmeli, J. Math. Phys. 10, 569 (1969).

21. M. Gel’fand and Z. Ya. Shapiro, Usp. Mat., Nauk 7, 3
(1952) [English transl.: Am. Math. Soc. Transl. (2) 2, 207 (1956)];
I. M. Gel’fand, R. A. Minlos, and Z. Ya. Shapiro, Representations
of the Rotation and Lorentz Groups and their Applications (Pergamon
Press, Inc., New York, 1963).

only one ordinary differential equation which is
formally identical to the partial wave equation in
potential scattering. The static solutions are then
carried out explicitly.

2. PRELIMINARIES AND NOTATIONS

In this section we review the method of writing
vector fields as functions of elements u of the group
SU, (the group of all unitary matrices of order two
and determinant unity). For more details see Refs. 1
and 2.

Let V(x) be a (complex) vector field. Instead of
decomposing V in some fixed coordinate system, we
decompose it with respect to a triad of orthonormal
vectors at each point in space. The triad of vectors is
chosen so that one vector is directed along the radial
coordinate r and the other two vectors are perpendic-
ular to it. The component of V along the vector
directed along r is of course just ¥,. The other two
components will then be given as linear combinations
of the spherical components ¥V, and V. Because of the
arbitrariness of the direction of the two vectors which
are normal to the one directed along r, a new angle is
introduced which we denote by ¢,. The other two
quantities that specify the vector field V are then given

by Vi = Vscos ¢, + Vysin ¢,,
V2 = - V¢ Sin ¢2 + Vg Cos ¢2 . (21)
Each one of the field functions V,, V;, and V,is a
function of the angles ¢, 8, and ¢, for each value of ¢
and r. For any value of the set of the variables ¢, 8,
and ¢,, we can associate a rotation g € Og4, whose

Euler’s angles are 47w — ¢, 6, and ¢,:

£§= g(%”r - ¢9 0’ ¢2) (22)
Accordingly, the functions V,, V;, and V, are func-
tions of g (of course, they are also functions of # and r):

Ve=V(8), Vie= Vi.(g). .3
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The quantities ¥; and ¥, are not convenient to
work with since under rotations they get mixed up.
We define, instead, the new functions

na(g) = =271 Vi) £ iVi()]
e | A AT

no(g) = V().
Clearly #,. and 7, satisfy the requirement for a function

(2.4)

cos g exp !:-12- (¢, + 952)]
u=

isin —g— exp [15 (¢ — 962)]

Clearly also, 7(u) satisfy the requirement for a function
over SU, to satisfy, i.e.;}

N($y + 4m, 0, &) = 9(dy, 6, ¢s),
7(d1, 0, o + 4m) = 1(¢;, 0, $), (2.8)
77(951 + 277’ e: ¢’2 + 27’) = ﬂ(?sla 6, 952)'

An additional property these functions have is that!

n.(yu) = €* ii’?i(“),

no(y1) = 7o(u), (2.9
where v is given by
e—i1~1’2 0
y = ( . em)' (2.10)

3. MAXWELL’S EQUATIONS
The Maxwell equations in free space are given by

V.E=0, V-B=0,

JB
VxE=-22,
X ot G.1)

VxB=a—I§

ot
Introducing the complex vector field
V =E + iB,

Maxwell’s equations can then be written as

V.V=0, (3.2a)
VxV-— i%‘{:(). (3.2b)

We decompose Eq. (3.2b)into its spherical components
and form the following four complex scalar equations

MOSHE CARMELI

over Oy to satisfy,® i.e.,

(s + 27, 0, $y) = "?(4’1: 8, 4o,
(g1, 0, b + 2m) = 5(¢;, 0, ¢). 2:5)

The functions #’s can also be considered as functions
over the group SU,,

7 = n(), (2.6)
where u € SU,. Euler’s angles are again employed to
describe the elements u ¢ SU,,

isin g exp [— %(951 - 1;5'2)]
) i @7
cos-z-exp [-— —?:(¢1 + ¢z)]

out of them and of Eq. (3.2a):
V.Vt stv XV — z%}'} =0, (3.3a)

{v XV — i?l’} + z{v XV~ iQY} =0. (3.3b)
ot }e ot Jo
Substituting now the expression for the symbol V in

Egs. (3.3), we obtain

10 ,, av, 1
— Ly 2
rzarr ')iat irsinﬂ
X {(icosﬁ + isinﬁé% + a—a;)(V,, F iV,,)} =0,
(3.4a)
1 0 . ., 0 0
;{:F p [r(Vy & iVy)] + (z % =+ cosec 959—6) V,}

To write Egs. (3.4) over the group SU, we substitute
for ¢ its value in terms of one of Euler’s angles, ¢ =
$m — ¢,. Accordingly, the derivatives 9/9¢ in Egs.
(3.4) should be replaced by —9/9¢, . Also, we use the

notation V, = — 2~} (V¢ 1 iV,
Vo= V,. 3.5
Equations (3.4) will then have the form
18 ,, v,
- =V e
ror (Vo) £ r ot
F 2‘}(1‘ cot 6 + i—a— F cosec § —Q~) Ve =0, (3.63)
20 o,
0 . 0 i}
=+ é;(zirVi) + (1 Py F cosec 0 5971) v,
+ 2% 'a% V, = 0. (3.6b)

® M. A. Naimark, Linear Representations of the Lorentz Group
(Pergamon Press, Inc., New York, 1964).
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Denoting now
V. et
VO H

n(u) =

No(u) = 3.7

and introducing the operators

d
K, = e;"‘”(:l:cot — + 1— F cosec § ——)
0¢, d¢,

0 (3.8)

Ky=i—>

¢’
Egs. (3.6) now have the form

11/ . 9\,
=== £ =}(n) F Kinz =0,
2t r(ar 6t)( o alad

(:i:a+

Kgo=0. (3.9
> t)(rni)+ o (3.9)

Equations (3.9) are Maxwell’s equations written
partially over the group SU,. The functions 7’s are
functions of the coordinates ¢ and r, and of course of
u € SU,. The operators K, and K, are well known
from the theory of representations of SU,. They
satisfy the following relations?:

Thn=[( £ m+ DG F mPETh.,
K Ti =mTi (3.10)

where T, (u) are the matrix elements of the irreduc-
ible representation of weight j of the group SU,.

4. THE n FUNCTIONS

We will assume that the functions #’s (i.e., 7. and
7o introduced in the last section) are such that their
modulus squares are integrable with respect to du:

fln(u)|2 du < oo. (4.1)
The integral in Eq. (4.1) is an invariant integral®> of
the function n(x) over the group SU,. When Euler’s
angles are used to describe the three variables of u, the
function n(¢z) means simply a function of ¢,, 6, and
¢, and du is an abbreviation for

—2sin 0 de, df d¢,,

fdu=1.

K_, and K3, and Eqgs. (3.10) are obtained
from the usual operators and formulas by exchanging the roles of
¢ and ¢, and the fact that T5,,(¢;, 6, o) = T7, (2, 0, ¢1). See, for
example, Footnote 17 of Ref. 1.

5 A. Weil, Actualities Sci. Ind., No. 869 (1938).

—_ 1
du—ﬁﬂ

which satisfies

4 The operators K,
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An important property of the invariant integral is that
[t = ) a

=fn(u) du
for any u, € SU,, and
ff(u‘l) du =ff(u) du.

As a consequence of the assumption (4.1), each 5(u)
can be expanded in the form

Mr) =3 3 ahNT®, (2

where —omnm
%t 1) = (2 + DAL, 1), (4.3)
Al (t, 1) f (t, r, w)T¥* (u) du. 449

In Eqs. (4.2) and (4.4) T? , (u) are the matrix elements
of the irreducible representation of SU,. They satisfy
the following orthogonality relation:

f T TE () du = (2 + 178,380,

The expression given above in terms of the elements
of the matrix 77, () is analogous to that of the Fourier
transform. The well-known Plancherel’s formula for
the Fourier transform will have the form

f @ du =S+ DAL (¢9)

in the present case. Just as the usual Fourier transform
realizes a decomposition of the regular representation
of the additive group of real numbers into itsirreducible
representations, the generalized Fourier transform
(4.4) realizes an isometric mapping of the regular
representation of SU, onto the direct sum of irreduc-
ible representations # — T7(u), where each representa-
tion u — T7(u) is included in this direct sum 2j 4 1
times. An analogous proposition and a formula
similar to Eq. (4.5) hold for any compact topological
group.®87

For the particular function 7, and #,, we will have
expansions similar to that of Eq. (4.2) with m now a,
fixed number!

n(t, r,u) = E

8

i
.oci:l,n(t’ r) T:i:l,n(u)ﬁ

ne=—23j

(4.6)

w,
=N

8

"70(’ r, u) g =z o('()-,n(t’ r)T(’;’”(u). (47)

¢ L. S. Pontrjagin, Topological Groups (Princeton University
Press, Princeton, N.J., 1946).

7 M. A. Naimark, Normed Rings (P. Noordhoff Ltd., Groningen,
The Netherlands, 1959).
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Equations (4.6) and (4.7) are a direct result of the fact
that 7, and 7, transform like T4, , and T} ,, respec-
tively, under the transformation u — yu, where y is
given by Eq. (2.10).

We now discuss the space spanned by the functions
75 and 7,.

Let us denote by L2(SU,) the space of all measurable
functions 7(u) satisfying the condition (4.1). This
space is a complete Hilbert space where the scalar
product is defined by

&) = f Eum*(u) du.

Following Naimark,® we denote by L2*(SU,) the set
of all functions ¢,(u) € L3(SU,) satisfying the con-
dition®

(4.8)

Plyu) = e (u), (4.9)
where the unitary matrix y is given by Eq. (2.10). For
each s, s=0, +3, +1,---, L¥(SU,) is a Hilbert
space which is a closed subspace of L*(SU,) and so is
complete. These subspaces are mutually orthogonal.
This can easily be seen by calculating the scalar
product (y,, ¢,). We have

<1pr’ Ws> —J%(“)W (u) d“
J' vowyiow du,  (4.10)

because of the invariance property of the integral.
Now,

P (yu) = ey (u),
pyu) = ey, (u). (4.11)
Accordingly, we have
(Wrs ) = Ty p), (4.12)

This shows that (p,, ) = 0if r # s.

We now form the orthogonal sum of the three
subspaces L™(SU,), m = —1,0, 1, which is obviously
the space spanned by the functions n_, 7y, 74,

¥ = L7%(SU,) ® LY(SU,) ® LYSU,). (4.13)
X is then the aggregate of all sums®
1
n(w) = 3 nw), (4.14

where 7, € L2*(SU,). The space J is a closed sub-
space of L*(SU,). For any two functions £, n € J we

8 We recall that the electromagnetic field functions 7_(u), 7e(u),
and 7, (u) satisfy Eq. (4.9) with values s = —1, 0, and 1, respectively
[compare Eq. (2.9)]. Accordingly, 7_ eL—z(SUZ), Mo EL“(SUg) and
74 € LYSUy)-

¢ See, for example, Ref. 3.
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define a scalar product by

Em=[tnr@d. @19
Using Eq. (4.14) and an analogous expression for &,
and using Eq. (4.12), we obtain!®

& (4.16)

1
=2 (& n0-
k=—1
One can easily verify that the above definition for the
scalar product satisfies the usual requirements: (1)

&m*=m8&;Q

(@€ + B, p) = (&, ) + B(n, v);

3) W, ) >0, (y,y) =0, if and only if y =0, for
any £, , y €3, and any complex numbers « and S.
Moreover, since each of the three subspaces L2(SU,),
s=—1, 0, 1, is complete, & is complete. It thus
follows that ¥ is a complete Hilbert space.’!

5. SOLUTION OF MAXWELL’S EQUATIONS

We now solve Egs. (3.9) by assuming solutions of
the form (4.6) and (4.7).*2 Using (4.6) and (4.7) in
(3.9) and using Eq. (3.10), we obtain

11 7] o
(a )(r 2.0 F LG + Dl =0, (5.0)
-
d 1
(:i: + )( il,,.>+[’(”r )} w=0, (52)
or 2
wherej—l 2,3,--- for oy and j=0, 1, 2,

3,--fordd, ,andm = —j, —j+1,---,jfor both

cases. (One canletj = 0, 1, 2, - - - for both cases with

the understanding that o/,,,, =0 for j=0.) By

elimination we can get a separate partial- differential

equatlon for the oco m» and expressing o, . in terms of
. We obtain

(aa—t - 7) (Fodm) + 0 + D =0 (53)

10 If we write the three field functions 7)., 7,, and 7, as a row
matrix and denote by 1t its Hermitian conjugate, the scalar product
in Jcan then be writtenas (§,7) = _f &nt du, where the integrand here
is the product of the row matrix £ and the column matrix nt. It wilt
be noted that this integrand is invariant under & — U, n— U,
where U is a 3 X 3 unitary matrix.

11 ]t is interesting to point out that an analogous Hilbert space
can be constructed for the Weyl tensor of the gravitational field.
See M. Carmeli, Phys. Letters 28A, 683 (1969).

12 Expansion in terms of matrix elements of the irreducible repre-
sentations of the rotation group in which the Euler angles are
employed with ¢, = 0 were used by Gel’fand and Shapiro (Ref. 2)
for solving the wave equation for the 3-vector potential in radiation
gauge. The result, however, was not so simple as the one we obtain
in this paper for Maxwell’s fields. Reference to previous applications
to solving the Dirac equation are also given in Ref. 2.
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0 =
and, a%, , =0,

= ____1__ _1_ i _a_ 203 4
e TTRNT R T

One can verify that a solution of Eq. (5.3) for «f ,
along with o, . given by Eq. (5.4) indeed solves the
original two equations, i.e., Egs. (5.1) and (5.2).
Equation (5.1) is trivially satisfied because of Eq. (5.4).
Equation (5.2) is satisfied for any o, . satisfying Eq.
(5.4) if o, satisfy Eq. (5.3). The case for which
J = 0 needs special attention because of the presence
of the factor j(j + 1) in Egs. (5.1) and (5.2) which
decouples the field functions. This case is discussed
below.

We thus arrive at the conclusion that knowing
of .(,r) leads to knowing o, (¢, r) completely. In
other words, the most general solution of Maxwell’s
equations is effectively reduced to the solution of only
one partial differential equation with two independent
variables ¢ and r.

The case of j = 0 (S wave) cannot be obtained as
a particular case. From Eq. (5.1) we obtain (m =0
also)

(3t 2)rsen=0 3
Accordingly, we have
0 0
o (rPage) = % (rPuge) = 0. (5.6)
The solution of this equation is
ogo = Q/r’, )

where Q is a constant independent of # or r, and is,
of course, the total charge of the system.
We now assume a solution of the form

) m(t, 1) = r'sz(k, e * dk (5.8)
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for Eq. (5.3). We obtain an ordinary differential
equation for the new function R(k, r):

d’R e _JU+ 1D
o+ [k . }R 0.

Equation (5.9) is the well-known partial-wave
equation obtained from the Schrodinger equation for
the zero-potential case. Its solutions are extensively
discussed by de Alfaro and Regge.’® The static case is
particularly simple and is given below.

When we assume the solutions are time independent,
Eq. (5.3) becomes

(5.9)

da? : . )
9 (rZa(:;,m) - J(] + 1)%,111 = 0, (510)
dr

where of is now a function of r alone and «f; is
given by Eq. (5.7). We notice that this equation is
invariant under the change j > —(j + 1). Therefore
we try solutions of the form ri~! and r~+2 to obtain

a’(‘;,m(r) = Aznjrf—l + B:n(_] + l)r—(:i+2), (511)
where 47, and Bj, are constants (with B} = Q). The
oc"ﬂ’m(r) are then obtained from o} by Eq. (5.4):

why () = £ 47 + DE[ALP — Bl 072),
(5.12)

The most general static solution of Maxwell’s
equations without sources is therefore given by

wrw)=3 3 [4jr

j=0 n=—j

+ B+ Dr T ), (5.13)
oW =F3 3 BiG+ OF

j=1 n=—1j
X [Ajr™ — Bir~U9TL, (u). (5.14)

13 V. de Alfaro and T. Regge, Potential Scattering (North-Holland
Publ. Co., Amsterdam, 1965).
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The generating functions of classical groups are used to set up recursion relations for their partition
functions. These are then used to find the internal multiplicity structure of the weights using Kostant’s

formula.

1. INTRODUCTION

The Clebsch—Gordan (CG) program of classical
groups suffers from two major difficulties. Unlike
the rotation group in three dimensions for which the
CG program is well known, many other classical
groups do not possess the properties of simple
reducibility and the equivalence of an' irreducible
representation (IR) and its conjugate. Here by the
lack of simple reducibility we mean the multiple
occurrence of an IR in the product of two IR’s. This
multiplicity is called the external multiplicity.!
However, many relations have been worked out??
which relate this external multiplicity to the multiple
occurrence of a given weight in an IR. This multiple
occurrence of a given weight in an IR, a feature not
shared by the IR’s of O(3), is called the internal (or
inner) multiplicity structure.

At present the internal multiplicity structure can
be worked out using Kostant’s formula.? There exist,
however, many other methods (for instance, the
recursion method of Fraudenthal®), although in
practice Kostant’s formula is the most useful.
Kostant’s formula involves the partition function of
expressing a nonnegative integral linear combination
of positive roots in terms of a nonnegative integral
linear combination of primitive roots. These partition
functions have been known so far only for rank two
and three groups.®

Recently we developed a method? of obtaining the
partition functions for 4, (~ SU(I + 1)) by using the
generating functions. In this, we set up recursion
relations for the partition functions, which are then
used in conjunction with Kostant’s formula to
compute the internal multiplicities. Of course, the

1 The terminology is from A. J. Macfarlane, L. O’Raifeartaigh,
and P. S. Rao, J. Math. Phys. 8, 536 (1967).

2 L, C. Biedenharn, Phys. Letters 3, 254 (1963); G. E. Baird and
L. C. Biedenharn, J. Math. Phys. 5, 1730 (1964).

3 G. Racah, Group Theoretical Concepts and Methods in Elemen-
tary Particle Physics, F. Giirsey, Ed. (Gordon and Breach, Science
Publishers, New York, 1964), p. 20; D. Speiser, ibid. p. 201.

4 N. Jacobson, Lie Algebras (Interscience Publishers, Inc., New
York, 1962), p. 261.

5 Reference 4, p. 247.

6 J. Tarski, J. Math. Phys. 4, 569 (1963).

7 T. S. Santhanam, MATSCIENCE Preprint MAT-3-1968.

calculation gets more and more involved as one goes
to large /. However, the method is precise.

In this paper, we work out the generating functions
for 4,, B, C;, D,, and G,. The calculations for the
other exceptional groups F,, Eq, E;, and E; will be
published elsewhere. We also obtain recursion
relations for the internal multiplicity.

In Sec. 2, the general discussion of Kostant’s
formula is given. We discuss the cases of 4, ~
SU(I + 1), B,~ 02l + 1), C, ~ (Spy,), D, ~ 0(2]),
and G, in Secs. 3 through 7. The discussion includes the
Weyl group, the structure of positive and primitive
(simple) roots and the Diophantine equations.
Explicit formulas are obtained and possible recursion
relations for the partition functions are given. In Sec.
8, the connection between internal and external
multiplicity structures is discussed. In Sec. 9, the
conclusions are given. Many of the properties of the
classical groups (structure of positive and primitive
roots and so on) are contained in many places. We
have taken them from the papers of Dynkin.®

2. KOSTANT’S FORMULA
The inner multiplicity M™(m') of a weight m'
belonging to the irreducible representation D{(m) of
highest weight m is given by Kostant’s formula,?
which is
M™(m’) =S§W68P[S(m + Ro) — (m" + Ry)], (2.1)

where W is the Weyl group and R, is half the sum of
positive roots. dg = +1 according as whether the
reflection is even or odd, respectively. P(M) is the
partition function for the weight M. This is the num-
ber of ways the weight M can be written as a sum
over all the positive roots

n
M = 2 a;Pis
i=1
with different nonnegative integers a;. On the other
hand, Antoine and Speiser® have shown that the vector
S(m + Ry) — (m" + Ry)
8 E. B. Dynkin, Am. Math. Soc. Transl. (2) 6, 353 (1957).

?J. P. Antoine and D. Speiser, J. Math. Phys. 5, 1226, 1560
(1964).

(2.2)
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can be expressed for a fixed S € W uniquely in terms
of the primitive roots as

Stm + R) — (' + R) = S kB, (2

! being the rank of the group. From (2.2) and (2.3),
it is clear that P(M) is the number of ways we can
write

! n
SkB=Ya,p,, k>0, 4,20, (24
i=1 p=1

where k; and a, are integers for given k,. It can be
shown that P(ky, - - -, k;) is the multiplicity M(y) of
a vector y of 1/A (Ref. 9), where the 1/A is related to
the character by Weyl’s formula

2"(&) = [x(m + RyJA,
A = x(Ry). 2.5)
x(m + R,) is the alternating elementary sum, such
that
x(m + Ry) = 2 dgexpi[S(m + Ry), &], (2.6)
Sew

and [S(m + R,), &] denotes the Cartan-Killing form
of the scalar product where the & are the coordinates
of the toroid (the group parameters). Hence (2.1) can

—p

10 - 0|10

01 -+ 0][1°1

00 olo 1

| 00 00 o

~ 00 Olo o

Cpu= :
I '

~ 00 --0[/00

00 0olo o

0 1[0 0

It can easily be seen that only for the case of / =1,
the matrix C is a nonsingular square matrix (a number)
so that there is a unique solution, i.e., M(k;) = 1.
However, in general, C is a rectangular matrix and so,
given the vector k and the matrix C, the number of
a’s is trivially infinite, and it is only because we have
the restriction that the elements of the matrix C are
nonnegative integers that the very question of the num-
ber of solutions (number of @’s, the components of the
vector a are again nonnegative integers) makes a
meaning after all. We recognize that the number of
solutions of Eq. (2.4) is given by the coefficient of

1705

be written as
M™m') = 3 SsM(kS, kS, - -, kD).
Sew

If we can calculate the partition function M(k5, - - -,
k%), then M™(m’) can be computed in principle. In
the following few sections, we explicitly calculate
M(S, - -, k) for the various classical groups.

3. A4, (~ SU({ + 1))

The roots of this algebra are given by e, — ¢;, i,
j=1,--+,({+1). The e, form an orthogonal basis
in (! + 1)-dimensional space in which the roots and
weights are defined. There are /(J + 1) roots. The
3(I + 1) positive roots are then obtained as e, — e;
(i <J). The primitive (simple) roots in this case are
B,=e —e,,i=1,2,--+,1 Equation (2.4) then
can be written as

Ki=C5‘,au,
i=1,"',l,
p=1, 3+ 1),

where Cis the [3/(/ + 1) x /]-dimensional rectangular
matrix

G.1)

Lo, dU+ 1)

o1 0 --- 0 1
01 1 0 1
0|1 1 0 1
0|0 1 0 1
010 0 0 1
A . (3.2)
010 0 - 1 1
100 1 1
1{0 0 1 I

x¥ixk2 - .- xl of the generating functions. To solve
the Diophantine equations (3.1) (actually, we mean
finding the number of solutions for given k and C),
we now use the method of generating functions.” Let

f(x;, -+, x;) be the generating function, defined by
h+n 1

Xy, ", X)) = , (3.3

fl( 1 l g (1 . xlcuxgzx. .. x,Cti) ( )

where x,,-:+,x, are chosen arbitrary parameters

with modulus less than one. M(k,, -, k,) is now
given by the coefficient of x¥1xkz - - - x¥in fi(x;, -,
x;). This can be checked by actually expanding f;
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in power series. Since the matrix C is known, we can
write the following important relation:

Now, we can expand (3.4) in power series. M(ky, "+,
k) is the coefficient of xkixke...x¥ in (3.4). If
Mk, -+, k,_y) is the coefficient of x¥ixkr- - - xkp

in f,_y(x;, - - -, x;_1), then it is easily seen that
Mky, -, k)
= E Z zﬂ(kl_rﬁkz—rl_rz;"';
ry_1=0 r3=07r;=0
. kkyi—ri—ro—-—ry (B
with

0 <k 08tk s
0Lrn+r+ - +r <k,
and
4+ +r=k,
so that
0 rn+ra+ - +r;<min (k, k;_,).

Define a new set of variables as follows:

h=r;lg=1r+1ry5 ",
ha=n+r+ - +ra; (3.6)
then
_ min (k;_l,kz) k12 kg k
M(kl"”’kl)= E z Z
fp=fi_g fy-p=f1_3  dg=iy £;=0

Equation (3.7) is exactly the recursion relation we
want, since it facilitates the computation of the parti-

T. S. SANTHANAM

tion function for any 4, (! arbitrary) in terms of the
simple partition function for 4,, viz.,

min (ky,kq)

M(.k19 kz) = Z 1
0
=1 + min (k;, k), (3.8)

which has been obtained earlier.® The weight space is
again (/ + 1)-dimensional with the condition on the
components of a weight m that

141

z mi = 0.
=1

Using Weyl’s theorems, it can be proved that the
components are (integer)/(/ + 1). The Weyl group in
this case permutes the components of m and is of
order (/ + 1)! The dominant weights satisfy

+1

my2>my > 2> My, Zlm.":()- (3.9

These properties of the dominant weight are used in
picking up the nonvanishing contributions to M™(m’).

4. B;(~ Ogyy)

The roots of this algebra are +(e; + ¢;), +e;
(i=1,---,]). There are 2/* of them. The /% positive
roots may be obtained as e, —e;, ¢, + ¢;, and
e; (i <j). The simple roots in this case are given by

B, =e,_, —e;, B, =¢,. Equation (2.4) then takes
the form
K, = Ciuau,
i=1,---,1, 4.1)
=1

where C is the (/> x [)-dimensional rectangular
matrix

=1,
11 - 1[0 0 0]+ 0
11 -+~ 2|11 0
N 11 -+ 2|11 2 0
." o o . .
I 11 201 1 2 0
1 2 201 2 2 1
2 2 22 2 2 2

The generating function in this case is

fjlgl(xl e

‘axl)=H

4.3
=1 (1 — xCrixfsi. .. (4.3)

C .
xl h')

It can be easily checked that, unlike the case of 4,

there is no simple recursion relation between f5: and
2 1 fE%*. However, the following very interesting rela-
tion can be obtained, which of course is obvious from

10 B. Gruber and T. S. Santhanam, Nuovo Cimento 45A, 1046
(1966).
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the structure of the C matrix, Eq. (4.2):

Al « e
fjlgl(xl,"',xz)= 1 z_ifl =2 7 > %1 %)
IIH(l_ Hxxllx)
=2 j=0 K=i—-1 r=—j

4.9

It is, therefore, clear that for large values of / the
recursion relation, Eq. (4.4), is not simple. For / = 2,
Eq. (4.4) reads as

FB(rs xp) = L XD “5)

(1 —xx3)’

so that the recursion relation for M is
MPx(ky, k) =3 M4k, — i5 ky — 2i), (4.6)

which is the relation obtained by Gruber and Zaccaria
carlier.l!

The weight space is /-dimensional and the com-
ponents may be integers or half-integers. The Weyl

U
1 1 “ .
| 11
= 11
o4y .
Ci = - $1(14+1)
il C
~ 1 2
22
11

The generating function is of the same type of
fEBi(x,,**, x;), but the elements of C are different
in view of Eq. (5.2). Again in this case, there is no
simple recursion relation between f¢t and f¥:1
However, the following relation can be easily verified:

A4
G, x) = le, G ”"31 . (53)
ITH (1= M %1 )

For the special case of /=2, the above relation
reads as

f 22(X1, Xa)
1- x1x2)
so that the same relation (4.6) is derived with k<> k,
as

(5.4)

2(xl ) Xg) =

My, k) = 3 M(ky — 2is ky — D). (5.5)

11 B. Gruber and F. Zaccaria, Nuovo Cimento Suppl. 5, 914
(1967).
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group in this case consists of all possible permutations
of the components of m together with all possible
changes of sign and is therefore of order 2*/!. The
dominant weights satisfy

m2m2- - 2m20.

5. Gy (~ Sp2D)

The roots of this algebra are +(e; £ e;), +2e;
(i=1,---,]). It should be stressed that the factor 2
in the second class of roots is very important and
makes this algebra different from B,. There are 2/
roots. The /% positive roots are given by e; — e,
e; + e;, 2¢; (i <j). The simple roots in this case are
B, _=e_,—~¢ (i=1,---,]), B, =2e,. Equation
(2.4) is then

.7

Ki=Cipau’
i=1,--,1 5.1)
,u=1,"',l2,

where C is the (/2 x I)-dimensional rectangular matrix

=1,---,12
210 +«- 0l--- 0
201 «++ 2.+ 0
211 2 0
(5.2)
211 ««- 20--- 0
212 o0 2|0+ 2
1

This is not surprising because of the known iso-
morphism between C, and B,.

The weight space is again /-dimensional and the
components of the weight are integers. The Weyl
group is the same as that for B, and is of order
2Y}. This consists of all the permutations of the
components of the weight and all changes in sign.
The dominant weight satisfies

m2m 2> 2>m 20

6. D (~0Ql)

The roots are given by 